【BZOJ2809】[Apio2012]dispatching

Description

在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿。在这个帮派里,有一名忍者被称之为 Master。除了 Master以外,每名忍者都有且仅有一个上级。为保密,同时增强忍者们的领导力,所有与他们工作相关的指令总是由上级发送给他的直接下属,而不允许通过其他的方式发送。现在你要招募一批忍者,并把它们派遣给顾客。你需要为每个被派遣的忍者 支付一定的薪水,同时使得支付的薪水总额不超过你的预算。另外,为了发送指令,你需要选择一名忍者作为管理者,要求这个管理者可以向所有被派遣的忍者 发送指令,在发送指令时,任何忍者(不管是否被派遣)都可以作为消息的传递 人。管理者自己可以被派遣,也可以不被派遣。当然,如果管理者没有被排遣,就不需要支付管理者的薪水。你的目标是在预算内使顾客的满意度最大。这里定义顾客的满意度为派遣的忍者总数乘以管理者的领导力水平,其中每个忍者的领导力水平也是一定的。写一个程序,给定每一个忍者 i的上级 Bi,薪水Ci,领导力L i,以及支付给忍者们的薪水总预算 M,输出在预算内满足上述要求时顾客满意度的最大值。
1  ≤N ≤ 100,000 忍者的个数;
1  ≤M ≤ 1,000,000,000 薪水总预算; 
 
0  ≤Bi < i  忍者的上级的编号;
1  ≤Ci ≤ M                     忍者的薪水;
1  ≤Li ≤ 1,000,000,000             忍者的领导力水平。

Input

从标准输入读入数据。
 
第一行包含两个整数 N M,其中 N表示忍者的个数,M表示薪水的总预算。
 
接下来 N行描述忍者们的上级、薪水以及领导力。其中的第 i 行包含三个整 Bi , C i , L i分别表示第i个忍者的上级,薪水以及领导力。Master满足B i = 0并且每一个忍者的老板的编号一定小于自己的编号 Bi < i

Output

输出一个数,表示在预算内顾客的满意度的最大值。

Sample Input

5 4
0 3 3
1 3 5
2 2 2
1 2 4
2 3 1

Sample Output

6

HINT

如果我们选择编号为 1的忍者作为管理者并且派遣第三个和第四个忍者,薪水总和为 4,没有超过总预算                         4。因为派遣了                              2   个忍者并且管理者的领导力为      3,
用户的满意度为 2      ,是可以得到的用户满意度的最大值。

题解:根据贪心思想,当我们选定一个忍者x作为管理者时,我们一定会选择x的子树中费用最小的那些忍者

但是要求选出的忍者费用和不超过m,如果用小根堆的话会比较难搞

于是我们不妨反过来想,选择费用最小的,也就意味着舍去费用最大的,于是我们采用大根堆,在DFS回溯的时候将儿子的堆合并,然后不断弹出堆顶直到堆中总费用不超过m,再用 总人数*当前忍者的领导力 来更新答案就行了

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n,root;
const int maxn=100010;
int next[maxn],head[maxn],ch[maxn][2],nvl[maxn],rt[maxn];
typedef long long ll;
ll m,ans,c[maxn],l[maxn],sum[maxn],siz[maxn];
int merge(int x,int y)
{
if(!x) return y;
if(!y) return x;
if(c[x]<c[y]) swap(x,y);
ch[x][1]=merge(ch[x][1],y);
if(nvl[ch[x][0]]<nvl[ch[x][1]]) swap(ch[x][0],ch[x][1]);
nvl[x]=nvl[ch[x][1]]+1;
return x;
}
void dfs(int x)
{
int i;
sum[x]=c[x],siz[x]=1;
for(i=head[x];i;i=next[i])
{
dfs(i);
sum[x]+=sum[i],siz[x]+=siz[i];
rt[x]=merge(rt[x],rt[i]);
while(sum[x]>m)
{
sum[x]-=c[rt[x]];
siz[x]--;
rt[x]=merge(ch[rt[x]][0],ch[rt[x]][1]);
}
}
ans=max(ans,siz[x]*l[x]);
}
int main()
{
scanf("%d%d",&n,&m);
int i,a;
nvl[0]=-1;
for(i=1;i<=n;i++)
{
scanf("%lld%lld%lld",&a,&c[i],&l[i]);
next[i]=head[a],head[a]=i;
if(!a) root=i;
rt[i]=i;
}
dfs(root);
printf("%lld",ans);
return 0;
}

【BZOJ2809】[Apio2012]dispatching 可并堆的更多相关文章

  1. BZOJ2809 [Apio2012]dispatching 可并堆

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2809 题意概括 n个点组成一棵树,每个点都有一个领导力和费用,可以让一个点当领导,然后在这个点的子 ...

  2. bzoj2809 [Apio2012]dispatching(左偏树)

    [Apio2012]dispatching Description 在一个忍者的帮派里,一些忍者们被选中派遣给顾客,然后依据自己的工作获取报偿.在这个帮派里,有一名忍者被称之为 Master.除了 M ...

  3. bzoj 2809: [Apio2012]dispatching -- 可并堆

    2809: [Apio2012]dispatching Time Limit: 10 Sec  Memory Limit: 128 MB Description 在一个忍者的帮派里,一些忍者们被选中派 ...

  4. bzoj2809 [Apio2012]dispatching——左偏树(可并堆)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...

  5. [BZOJ2809][Apio2012]dispatching 贪心+可并堆

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2809 我们考虑以每一个节点作为管理者所得的最优答案,一定是优先选择所要薪水少的忍者.那么首 ...

  6. BZOJ2809: [Apio2012]dispatching

    传送门 主席树经典题. 首先把树搞出来,然后搞出来DFS序.然后离散化点权,在DFS序上建立主席树. 对于每个点对应的区间,查找对应的区间最大的点数即可. //BZOJ2809 //by Cydiat ...

  7. BZOJ2809——[Apio2012]dispatching

    1.题目大意:给一棵树和M值,每个点有两个权值C和L,选x个点,这x个点的C值的和不能超过M,且这x个点如果都在某个子树内 定义满意度为x*这个子树的根的L值 2.分析:这是一道可并堆的题目,我们考虑 ...

  8. BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...

  9. 2809: [Apio2012]dispatching 可并堆 左偏树

    https://www.lydsy.com/JudgeOnline/problem.php?id=2809 板子题wa了一下因为输出ans没有lld #include<iostream> ...

随机推荐

  1. [转自setting]神奇的jQuery

    前言 之前的项目也一直都是在用jQuery,遇到问题就翻翻API,也从来没有进行过比较系统的总结和整理.最近由于要做个培训,因为比较系统的归纳了一下javascript的相关知识,顺手做个笔记.说到j ...

  2. C++/C语言的标准库函数与运算符的区别new/delete malloc/free

    malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符.它们都可用于申请动态内存和释放内存.下面来看他们的区别. 一.操作对象有所不同 malloc与free是C++ ...

  3. am335x phy led problem

    问题描述 连接网线的情况下,每次进行软件"reboot",网口的LINK LED能够正常的熄灭,而ACTIVE LED却是亮的. reboot重启之后,LINK的灯正常变亮,而AC ...

  4. int、long、longlong、float、double、long double的范围

  5. C++ 数据抽象

    C++ 数据抽象数据抽象是指,只向外界提供关键信息,并隐藏其后台的实现细节,即只表现必要的信息而不呈现细节. 数据抽象是一种依赖于接口和实现分离的编程(设计)技术. 让我们举一个现实生活中的真实例子, ...

  6. CentOS和Ubuntu安装软件命令对比(区别)

    此表内容来自<Ubuntu Server最佳方案>,CentOS和Ubuntu(Debian)是VPS最常见的系统,这份表很实用,分享下  

  7. Unity文件操作路径

    Unity3D中的资源路径: Application.dataPath:此属性用于返回程序的数据文件所在文件夹的路径.例如在Editor中就是Assets了. Application.streamin ...

  8. [转] COM编程总结

    一.Com概念 所谓COM(Componet Object Model,组件对象模型),是一种说明如何建立可动态互变组件的规范,此规范提供了为保证能够互操作,客户和组件应遵循的一些二进制和网络标准.通 ...

  9. Java 应用程序设计规范

    1.能在程序中取的产生就从程序中取.不用客户输入(减少客户输入). 比如客户号 信息 等. 2.如果有参数输入尽可能减少参数输入的个数(4个->0个): 3.验证入参(尽可能的实现输入参数的正确 ...

  10. Spring Framework 官方文档学习(四)之Validation、Data Binding、Type Conversion(一)

    题外话:本篇是对之前那篇的重排版.并拆分成两篇,免得没了看的兴趣. 前言 在Spring Framework官方文档中,这三者是放到一起讲的,但没有解释为什么放到一起.大概是默认了读者都是有相关经验的 ...