lucene中的TokenStream,TokenFilter之间关系
 
TokenStream是一个能够在被调用后产生语汇单元序列的类,其中有两个类型:Tokenizer和TokenFilter,两者的不同在于TokenFilter中包含了一个TokenStream作为input,该input仍然可以为一种TokenFilter进行递归封装,是一种组合模式;而Tokenzier接受一个Reader对象读取字符并创建语汇单元,TokenFilter负责处理输入的语汇单元,通过新增、删除或者修改属性的方式来产生新的语汇单元。
 


 
 
 
对照我们之前分析的同义词TokenizerFactory相关配置,其数据流的过程如下:
 
java.io.Reader -> com.chenlb.mmseg4j.solr.MMSegTokenizer -> SynonymFilter -> StopFilter -> WordDelimiterFilter -> LowerCaseFilter -> RemoveDuplicatesTokenFilter
 
对于某些TokenFilter来说,在分析过程中对事件的处理顺序非常重要。当指定过滤操作顺序时,还应该考虑这样的安排对于应用程序性能可能造成的影响。
 
在solr中,schema.xml(最新版本已经修改为managed-schema)的作用是告诉solr该如何对输入的文档进行索引。
 
 
对于每个不同的field,需要设置其对应的数据类型,数据类型决定了solr如何去解释每个字段,以及怎样才能搜索到这个字段。在字段分析器中(field analyzers),指导solr怎样对输入的数据进行处理然后再构建出索引,类似于文本处理器或者文本消化器。
 
当一个document被索引或者检索操作的时候,分析器Analyzer会审阅字段field的文本内容,然后生成一个token流,analyzer可以由多个tokenizer和filter组成;tokenizer可以将field字段的内容切割成单个词或token,进行分词处理;filters可以接收tokenizer分词输出的token流,进行转化过滤处理,例如对词元进行转换(简繁体转换),舍弃无用词元(虚词谓词)。tokenizer和filter一起组成一个管道或者链条,对输入的文档和输入的查询文本进行处理,一系列的tokenizer和filter被称为分词器analyzer,得到的结果被存储成为索引字典用来匹配查询输入条件。
 
此外,我们还可以将索引分析器和查询分析器分开,例如下面的字段配置的意思:对于索引,先经过一个基本的分析器,然后转换为小写字母,接着过滤掉不在keepword.txt中的词,最后将剩下的词元转换为同义词;对于查询,先经过一个基本的分词器,然后转换为小写字母就可以了。
 
<fieldType name="nametext" class="solr.TextField">
<analyzer type="index">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>
<filter class="solr.SynonymFilterFactory" synonyms="syns.txt"/>
</analyzer>
<analyzer type="query">
<tokenizer class="solr.StandardTokenizerFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
</analyzer>
</fieldType>
 
在Lucene实战一书中,详解了如何从头编写一个同义词Analyzer,通过改写termAttribute以及positionIncrementAttribute的方式来达到实现同义词的方式,不过由于书上的示例比较陈旧,而charTermAttribute不能达到修改同义词元的目的(只能进行append),因此替换最终的目的没有达到。
 
 
public class SynonymFilter extends TokenFilter {

    private static final String TOKEN_TYPE_SYNONYM = "SYNONYM";

    private Stack<String> synonymStack;
private SynonymEngine synonymEngine;
private AttributeSource.State current;
private final CharTermAttribute bytesTermAttribute;
private final PositionIncrementAttribute positionIncrementAttribute; /**
* Construct a token stream filtering the given input.
*
* @param input
*/
protected SynonymFilter(TokenStream input, SynonymEngine synonymEngine) {
super(input);
this.synonymEngine = synonymEngine;
synonymStack = new Stack<>(); this.bytesTermAttribute = addAttribute(CharTermAttribute.class);
this.positionIncrementAttribute = addAttribute(PositionIncrementAttribute.class);
} @Override
public boolean incrementToken() throws IOException {
if (!synonymStack.isEmpty()) {
String syn = synonymStack.pop();
restoreState(current); // bytesTermAttribute.setBytesRef(new BytesRef(syn.getBytes()));
// bytesTermAttribute.resizeBuffer(0);
bytesTermAttribute.append(syn); positionIncrementAttribute.setPositionIncrement(0);
return true;
} if (!input.incrementToken()) {
return false;
} if (addAliasesToStack()) {
current = captureState();
} return true;
} private boolean addAliasesToStack() throws IOException {
String[] synonyms = synonymEngine.getSynonyms(bytesTermAttribute.toString());
if (synonyms == null) {
return false;
}
for (String synonym : synonyms) {
synonymStack.push(synonym);
}
return true;
}
}
 
Analyzer,用于将tokenizer和filter串联起来:
 
public class SynonymAnalyzer extends Analyzer {
@Override
protected TokenStreamComponents createComponents(String fieldName) {
StandardTokenizer source = new StandardTokenizer();
return new TokenStreamComponents(source, new SynonymFilter(new StopFilter(new LowerCaseFilter(source),
new CharArraySet(StopAnalyzer.ENGLISH_STOP_WORDS_SET, true)), new TestSynonymEngine()));
}
}
 
我们定义一个简易的同义词匹配引擎:
 
public interface SynonymEngine {
String[] getSynonyms(String s) throws IOException;
} public class TestSynonymEngine implements SynonymEngine { public static final Map<String, String[]> map = new HashMap<>(); static {
map.put("quick", new String[]{"fast", "speedy"});
} @Override
public String[] getSynonyms(String s) throws IOException {
return map.get(s);
}
}
对最终结果进行测试:
 

public static void main(String[] args) throws IOException {
SynonymAnalyzer analyzer = new SynonymAnalyzer();
TokenStream tokenStream = analyzer.tokenStream("contents", new StringReader("The quick brown fox"));
tokenStream.reset(); CharTermAttribute charTermAttribute = tokenStream.addAttribute(CharTermAttribute.class);
OffsetAttribute offsetAttribute = tokenStream.addAttribute(OffsetAttribute.class);
PositionIncrementAttribute positionIncrementAttribute =
tokenStream.addAttribute(PositionIncrementAttribute.class);
TypeAttribute typeAttribute = tokenStream.addAttribute(TypeAttribute.class); int position = 0;
while (tokenStream.incrementToken()) {
int positionIncrement = positionIncrementAttribute.getPositionIncrement();
if (positionIncrement > 0) {
position += positionIncrement;
System.out.println();
System.out.print(position + " : ");
} System.out.printf("[%s : %d -> %d : %s]", charTermAttribute.toString(), offsetAttribute.startOffset(), offsetAttribute.endOffset(),
typeAttribute.type());
}
 
测试出的结果,可以看出位置1的谓词the已经被剔除,位置2处加入了较多的同义词,由于使用的append,所以同义词记在了一起。
 
2 : [quick : 4 ->  9 : <ALPHANUM>][quickspeedy : 4 ->  9 : <ALPHANUM>][quickfast : 4 ->  9 : <ALPHANUM>]
3 : [brown : 10 -> 15 : <ALPHANUM>]
4 : [fox : 16 -> 19 : <ALPHANUM>]
 
 
 
Solr同义词设置
 
Solr中的同义词使用的是 SynonymFilterFactory 来进行加载的,我们需要在定义schema时,对某个字段设置同义词时,可以使用:
 
<fieldtype name="textComplex" class="solr.TextField" positionIncrementGap="100">
<analyzer type="index">
<tokenizer class="com.chenlb.mmseg4j.solr.MMSegTokenizerFactory" mode="complex" dicPath="/Users/mazhiqiang/develop/tools/solr-5.5.0/server/solr/product/conf/dic" />
<filter class="solr.StopFilterFactory" ignoreCase="false" words="stopwords.txt"/>
<filter class="solr.WordDelimiterFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<filter class="solr.NGramFilterFactory" minGramSize="1" maxGramSize="20"/>
<filter class="solr.StandardFilterFactory"/>
</analyzer>
<analyzer type="query">
<tokenizer class="com.chenlb.mmseg4j.solr.MMSegTokenizerFactory" mode="complex" dicPath="/Users/mazhiqiang/develop/tools/solr-5.5.0/server/solr/product/conf/dic" />
<filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt" ignoreCase="true" expand="true"/>
<filter class="solr.StopFilterFactory" ignoreCase="false" words="stopwords.txt"/>
<filter class="solr.WordDelimiterFilterFactory"/>
<filter class="solr.LowerCaseFilterFactory"/>
<!-- <filter class="solr.EdgeNGramFilterFactory" minGramSize="1" maxGramSize="20"/> -->
<filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
</analyzer>
</fieldtype>
 
需要配置对应的 synonyms 属性,指定 定义同义词的配置文件,设置是否忽略大小写等属性。
 
而在加载同义词时,对文件进行逐行读取(使用LineNumberReader),对于每一行的数据,先使用 => 作为分隔符,同义词在左右两边(左边作为input,右边作为output)都可以配置成多个,以逗号分隔,最后以笛卡尔积的形式将其放至map中。
 
String line = null;
while ((line = in.readLine()) != null) {
if (line.length() == 0 || line.charAt(0) == '#') {
continue; // ignore empty lines and comments
} // TODO: we could process this more efficiently.
String sides[] = split(line, "=>");
if (sides.length > 1) { // explicit mapping
if (sides.length != 2) {
throw new IllegalArgumentException("more than one explicit mapping specified on the same line");
}
String inputStrings[] = split(sides[0], ",");
CharsRef[] inputs = new CharsRef[inputStrings.length];
for (int i = 0; i < inputs.length; i++) {
inputs[i] = analyze(unescape(inputStrings[i]).trim(), new CharsRefBuilder());
} String outputStrings[] = split(sides[1], ",");
CharsRef[] outputs = new CharsRef[outputStrings.length];
for (int i = 0; i < outputs.length; i++) {
outputs[i] = analyze(unescape(outputStrings[i]).trim(), new CharsRefBuilder());
}
// these mappings are explicit and never preserve original
for (int i = 0; i < inputs.length; i++) {
for (int j = 0; j < outputs.length; j++) {
add(inputs[i], outputs[j], false);
}
}
 
所有的同义词加载完成后,会生成一个SynonymMap,该map就被用来在全文检索的过程中进行同义词替换。
 
在我们对某个单词进行查询时,可以查询到我们设置的字段query分析器结构,生成一个TokenizerChain对象,对应的Tokenizer为我们设置的分词器,filters为我们设置的过滤器链条,会根据过滤器链条Chain进行
 



 
 
 
通过input的方式设置同义词Filter,组成该链条结果。
 
@Override
protected TokenStreamComponents createComponents(String fieldName) {
Tokenizer tk = tokenizer.create();
TokenStream ts = tk;
for (TokenFilterFactory filter : filters) {
ts = filter.create(ts);
}
return new TokenStreamComponents(tk, ts);
}
 
而具体到每个FilterFactory,例如SynonymFilterFactory,都通过create方法来创建对应的Filter用于同义词过滤。
 
@Override
public TokenStream create(TokenStream input) {
// if the fst is null, it means there's actually no synonyms... just return the original stream
// as there is nothing to do here.
return map.fst == null ? input : new SynonymFilter(input, map, ignoreCase);
}
 
创建一个SynonymFilter来进行最后真正的筛选,将同义词进行替换,整体的类结构图如下:
 


 
lucene内置的Token
 
lucene中除了内置的几个Tokenizer,在solr中的field analyzer以及index中也得到了应用,下面就对这几种filter进行测试,我们分析的文本为:Please email clark.ma@gmail.com by 09, re:aa-bb
 
 
StandardAnalyzer
1 : [please : 0 ->  6 : <ALPHANUM>]
2 : [email : 7 ->  12 : <ALPHANUM>]
3 : [clark.ma : 13 ->  21 : <ALPHANUM>]
4 : [gmail.com : 22 ->  31 : <ALPHANUM>]
6 : [09 : 35 ->  37 : <NUM>]
7 : [re:aa : 39 ->  44 : <ALPHANUM>]
8 : [bb : 45 ->  47 : <ALPHANUM>]
去除空格,标点符号,@;
 
ClassicAnalyzer
1 : [please : 0 ->  6 : <ALPHANUM>]
2 : [email : 7 ->  12 : <ALPHANUM>]
3 : [clark.ma@gmail.com : 13 ->  31 : <EMAIL>]
5 : [09 : 35 ->  37 : <ALPHANUM>]
6 : [re : 39 ->  41 : <ALPHANUM>]
7 : [aa : 42 ->  44 : <ALPHANUM>]
8 : [bb : 45 ->  47 : <ALPHANUM>]
能够识别互联网域名和email地址,
LetterTokenizer
1 : [Please : 0 ->  6 : word]
2 : [email : 7 ->  12 : word]
3 : [clark : 13 ->  18 : word]
4 : [ma : 19 ->  21 : word]
5 : [gmail : 22 ->  27 : word]
6 : [com : 28 ->  31 : word]
7 : [by : 32 ->  34 : word]
8 : [re : 39 ->  41 : word]
9 : [aa : 42 ->  44 : word]
10 : [bb : 45 ->  47 : word]
丢弃掉所有的非文本字符
KeywordTokenizer
1 : [Please email clark.ma@gmail.com by 09, re:aa-bb : 0 ->  47 : word]
 
将整个文本当做一个词元
LowerCaseTokenizer
1 : [please : 0 ->  6 : word]
2 : [email : 7 ->  12 : word]
3 : [clark : 13 ->  18 : word]
4 : [ma : 19 ->  21 : word]
5 : [gmail : 22 ->  27 : word]
6 : [com : 28 ->  31 : word]
7 : [by : 32 ->  34 : word]
8 : [re : 39 ->  41 : word]
9 : [aa : 42 ->  44 : word]
10 : [bb : 45 ->  47 : word]
对其所有非文本字符,过滤空格,标点符号,将所有的大写转换为小写
NGramTokenizer
可以定义最小minGramSize(default=1), 最大切割值maxGramSize(default=2),生成的词元较多。
假设minGramSize=2, maxGramSize=3,输入abcde,输出:ab abc abc bc bcd cd cde
读取字段并在给定范围内生成多个token
PathHierachyTokenizer
c:\my document\filea\fileB,new PathHierarchyTokenizer('\\', '/')
1 : [c: : 0 ->  2 : word][c:/my document : 0 ->  14 : word][c:/my document/filea : 0 ->  20 : word][c:/my document/filea/fileB : 0 ->  26 : word]
使用新的文件目录符去代替文本中的目录符
PatternTokenizer
需要两个参数,pattern正则表达式,group分组。
pattern=”[A-Z][A-Za-z]*” group=”0″
输入: “Hello. My name is Inigo Montoya. You killed my father. Prepare to die.”
输出: “Hello”, “My”, “Inigo”, “Montoya”, “You”, “Prepare”
进行正则表达式分组匹配
UAX29URLEmailTokenizer
1 : [Please : 0 ->  6 : <ALPHANUM>]
2 : [email : 7 ->  12 : <ALPHANUM>]
3 : [clark.ma@gmail.com : 13 ->  31 : <EMAIL>]
4 : [by : 32 ->  34 : <ALPHANUM>]
5 : [09 : 35 ->  37 : <NUM>]
6 : [re:aa : 39 ->  44 : <ALPHANUM>]
7 : [bb : 45 ->  47 : <ALPHANUM>]
去除空格和标点符号,但保留url和email连接
 
 
Lucene内置的TokenFilter
 
过滤器能够组成一个链表,每一个过滤器处理上一个过滤器处理过后的词元,所以过滤器的排序很有意义,第一个过滤器最好能处理大部分常规情况,最后一个过滤器是带有针对特殊性的。
 
 
ClassicFilter “I.B.M. cat’s can’t” ==> “I.B.M”, “cat”, “can’t” 经典过滤器,可以过滤无意义的标点,需要搭配ClassicTokenizer使用
ApostropheFilter
1 : [abc : 0 ->  3 : <ALPHANUM>]
2 : [I.B.M : 4 ->  9 : <ALPHANUM>]
3 : [cat : 10 ->  15 : <ALPHANUM>]
4 : [can : 16 ->  21 : <ALPHANUM>]
省略所有的上撇号
LowerCaseFilter
1 : [i.b.m : 0 ->  5 : <ALPHANUM>]
2 : [cat's : 6 ->  11 : <ALPHANUM>]
3 : [can't : 12 ->  17 : <ALPHANUM>]
转换成小写
TypeTokenFilter
<filter class=”solr.TypeTokenFilterFactory” types=”email_type.txt” useWhitelist=”true”/>
如果email_type.txt设置为ALPHANUM,会保留该类型的所有分析结果,否则会被删除掉
给定一个文件并设置成白名单还是黑名单,只有符合条件的type才能被保留
TrimFilter   去掉空格
TruncateTokenFilter
1 : [I.B : 0 ->  5 : <ALPHANUM>]
2 : [cat : 6 ->  11 : <ALPHANUM>]
3 : [can : 12 ->  17 : <ALPHANUM>]
截取文本长度,左边为prefixLength=3
PatternCaptureGroupFilter 可配置属性pattern和preserve_original(是否保留原文) 从输入文本中保留能够匹配正则表达式的
PatternReplaceFilter    
StopFilter   创建一个自定义的停词词库列表,过滤器遇到停词就直接过滤掉
KeepWordFilter 与StopFilter的含义正好相反  
LengthFilter 设置一个最小值min和最大值max 为词元的长度设置在一个固定范围
WordDelimiterFilter

A:-符号 wi-fi 变成wi fi
B:驼峰写法 LoveSong 变成 love song 对应参数
C:字母-数字 xiaomi100 变成 xiaomi 100
D:–符号 like–me 变成 like me
E:尾部的’s符号 mother’s 变成 mother
F:-符号 wi-fi 变成 wifi 于规则A不同的是没有分成两个词元
G:-符号,数字之间 400-884586 变成 400884586
H:-符号 无论字母还是数字,都取消-符号 wi-fi-4 变成wifi4

 
其他参数
splitOnCaseChange=”1″ 默认1,关闭设为0 规则B
generateWordParts=”1″ 默认1 ,对应规则AB
generateNumberParts=”1″ 默认1 对应规则F
catenateWords=”1″ 默认0 对应规则A
splitOnNumerics=”1″ 默认1,关闭设0 规则C
stemEnglishPossessive 默认1,关闭设0 规则E
catenateNumbers=”1″ 默认0 对应规则G
catenateAll=”1″ 默认0 对应规则 H
preserveOriginal=”1″ 默认0 对词元不做任何修改 除非有其他参数改变了词元

protected=”protwords.txt” 指定这个单词列表的单词不被修改
通过分隔符分割单元
 
 
 
 
 
 
 
 
 
 

Lucene 中的Tokenizer, TokenFilter学习的更多相关文章

  1. Lucene中TokenStream,Tokenizer,TokenFilter,TokenStreamComponents与Analyzer

    TokenStream extends AttributeSource implements Closeable: incrementToken,end,reset,close Tokenizer直接 ...

  2. 《Lucene in Action 第二版》第4章节 学习总结 -- Lucene中的分析

    通过第四章的学习,可以了解lucene的分析过程是怎样的,并且可以学会如何使用lucene内置分析器,以及自定义分析器.下面是具体总结 1. 分析(Analysis)是什么? 在lucene中,分析就 ...

  3. 理解Lucene中的Analyzer

    学习一个库,最好去官网.因为很多库API变动十分大,从博客上找的教程都过时了. Lucene原理就是简简单单的"索引",以空间换时间.但是Lucene将这件事做到了极致,后人再有想 ...

  4. Lucene.net(4.8.0) 学习问题记录五: JIEba分词和Lucene的结合,以及对分词器的思考

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...

  5. Lucene.net(4.8.0) 学习问题记录一:分词器Analyzer的构造和内部成员ReuseStategy

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...

  6. Lucene.net(4.8.0) 学习问题记录六:Lucene 的索引系统和搜索过程分析

    前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...

  7. Python3中的字符串函数学习总结

    这篇文章主要介绍了Python3中的字符串函数学习总结,本文讲解了格式化类方法.查找 & 替换类方法.拆分 & 组合类方法等内容,需要的朋友可以参考下. Sequence Types ...

  8. Android中的SQLite使用学习

    Android中的SQLite使用学习 SQLite是非常流行的嵌入式关系型数据库,轻载, 速度快,而且是开源.在Android中,runtime提供SQLite,所以我们可以使用SQLite,而且是 ...

  9. 【Lucene3.6.2入门系列】第03节_简述Lucene中常见的搜索功能

    package com.jadyer.lucene; import java.io.File; import java.io.IOException; import java.text.SimpleD ...

随机推荐

  1. POJ 3436 ACM Computer Factory(最大流+路径输出)

    http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性 ...

  2. POJ 2195 Going Home(费用流)

    http://poj.org/problem?id=2195 题意: 在一个网格地图上,有n个小人和n栋房子.在每个时间单位内,每个小人可以往水平方向或垂直方向上移动一步,走到相邻的方格中.对每个小人 ...

  3. 2016"百度之星" - 初赛(Astar Round2B)1003 瞬间移动 组合数学+逆元

    瞬间移动  Accepts: 1018  Submissions: 3620  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: 65536/ ...

  4. Java Spring-AOP的概述

    2017-11-08 19:31:23 AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP ...

  5. tp5集成淘宝,微信,网易,新浪等第三方登录

    tp5集成淘宝,微信,网易,新浪等第三方登录 一.总结 一句话总结: 接口 链接 实现的话就是这些平台给的一个接口(链接),你通过这些接口登录进去之后,它会给你返回用户名,头像之类的信息,我们的网站存 ...

  6. 2018-2019-2《网络对抗技术》Exp0 Kali安装 Week1

    2018-2019-2<网络对抗技术>Exp0 Kali安装 Week1 Kali的安装 设置虚拟机的名称和操作系统 为虚拟机分配虚拟内存,大小为4096M,分配存储空间,大小为25.0G ...

  7. 获取iframe(angular 动态页面)高度

    问题比较特殊,google了好久才得到启示 开发的angular页面,需要嵌入到客户的web页中,以iframe方式.由于iframe的高度需要指定,而angular动态生成机制导致页面高度会随时变化 ...

  8. UVALive-2966 King's Quest(强连通+二分图匹配)

    题目大意:有n个男孩和和n个女孩,已只每个男孩喜欢的女孩.一个男孩只能娶一个女孩.一个女孩只能嫁一个男孩并且男孩只娶自己喜欢的女孩,现在已知一种他们的结婚方案,现在要求找出每个男孩可以娶的女孩(娶完之 ...

  9. python学习笔记(五)---sublime text 多行代码注释快捷键

    转载网址:https://blog.csdn.net/mycms5/article/details/70194045/ 多行选择后按下ctrl+/ 选择类 Ctrl+D 选中光标所占的文本,继续操作则 ...

  10. activity+fragment+listview+adapter+bean在同一个类中的套路

    1.xml activity_main.xml <?xml version="1.0" encoding="utf-8"?><FrameLay ...