DL基础补全计划(四)---对抗过拟合:权重衰减、Dropout
PS:要转载请注明出处,本人版权所有。
PS: 这个只是基于《我自己》的理解,
如果和你的原则及想法相冲突,请谅解,勿喷。
前置说明
本文作为本人csdn blog的主站的备份。(BlogID=108)
环境说明
- Windows 10
- VSCode
- Python 3.8.10
- Pytorch 1.8.1
- Cuda 10.2
前言
在《DL基础补全计划(三)---模型选择、欠拟合、过拟合》( https://blog.csdn.net/u011728480/article/details/118881125 )一文中,我们已经了解了我们训练过程中的一些现象,对于欠拟合问题我们一般是增加训练集大小。对于过拟合,我们也提供了一个解决方案,那就是限制模型的复杂度(参数个数)。
在以后我们构造的模型里面,其参数都是成百上千的,如果通过限制参数(更换模型)来解决过拟合问题太简单粗暴了,于是我们需要一些更加细腻的手段来抑制过拟合。此外,我们还必须知道,我们增加训练集总是能够缓解过拟合的问题,但是这不是根本办法。于是深度学*大佬们又引出了其他的两个方案,他们分别是权重衰减和Dropout。
到此为止,我们可以有如下的方法缓解过拟合问题:
- 控制模型复杂度
- 增大训练集
- 权重衰减
- Dropout
权重衰减(L2正则化)
其实书上对于权重衰减的定义还是比较好理解的,我们定义我们的模型为M(X),当M(X)=0时,此时,我们的模型最简单,因为所有的输入都是0。我们最终想要的是M(X)的值越来越接*于0,那么我们权重的范数也需要越来越接*于0,这样M(X)的复杂度越来越小。
出于以上的目的,我们可以将权重的范数给加到Loss函数结果里面去,通过BP算法,这样我们可以让权重的范数越来越接*于0。其中我们常用的L2范数,其可以限制权重中的大值,也可以使权重均匀分布,不会出现极端值,这是一般情况下我们想看到的。
下面,我们通过一个实例及图示来感性的认知权重衰减。
实例代码
首先我们设计了一个200个权重和1个偏置的数据生成器,加上噪声,得到我们数据集。这里我们采集了100个测试集和20个训练集。从这里我们马上就可以知道,这个肯定会过拟合,因为训练集太小了,而模型复杂度太大了。
下面是完整代码:
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
from torch.utils import data
from matplotlib.pyplot import MultipleLocator
fig, ax = plt.subplots()
xdata0, ydata0 = [], []
xdata1, ydata1 = [], []
line0, = ax.plot([], [], 'r-', label='TrainError')
line1, = ax.plot([], [], 'b-', label='TestError')
def init_and_show():
ax.set_xlabel('epoch')
ax.set_ylabel('loss')
ax.set_title('Train/Test Loss')
ax.set_xlim(0, epochs)
ax.set_ylim(10e-5, 100)
ax.set_yscale('log')
# y_locator = MultipleLocator(0.1)
# ax.yaxis.set_major_locator(y_locator)
ax.legend([line0, line1], ('TrainError', 'TestError'))
# ax.legend([line1], ('TestError', ))
line0.set_data(xdata0, ydata0)
line1.set_data(xdata1, ydata1)
plt.show()
def l2_penalty(w, b = None):
if b == None:
return (w**2).sum() / 2
else:
return ((w**2).sum() + (b**2).sum()) / 2
def synthetic_data(true_w, true_b, num_examples): #@save
"""⽣成y = ax1 + bx2 + cx3 .... .... + b + 噪声。"""
X = np.random.normal(0, 1, (num_examples, len(true_w)))
y = np.matmul(X, true_w) + true_b
# 噪声
y += np.random.normal(0, 0.1, y.shape)
return X, y.reshape((-1, 1))
class TestNet(nn.Module):
def __init__(self, input_nums):
super(TestNet, self).__init__()
self.test_net = nn.Sequential(
# y=X*W+B
# x.shape(batch_size, input_nums), w.shape(input_nums, output_nums)
# y.shape(batch_size, output_nums)
torch.nn.Linear(input_nums, 1)
)
def forward(self, x):
# print(x.dtype)
#
return self.test_net(x)
# copy from d2l/torch.py
def load_array(data_arrays, batch_size, is_train=True):
"""Construct a PyTorch data iterator."""
dataset = data.TensorDataset(*data_arrays)
return data.DataLoader(dataset, batch_size, shuffle=is_train)
# def data_loader(batch_size, features, labels):
# num_examples = len(features)
# indices = list(range(num_examples))
# np.random.shuffle(indices) # 样本的读取顺序是随机的
# for i in range(0, num_examples, batch_size):
# j = np.array(indices[i: min(i + batch_size, num_examples)])
# yield torch.tensor(features.take(j, 0)), torch.tensor(labels.take(j)) # take函数根据索引返回对应元素
def train(dataloader, model, loss_fn, optimizer, lambda_val = 3):
size = train_examples
num_batches = train_examples / batch_size
train_loss_sum = 0
for batch, (X, y) in enumerate(dataloader):
# move X, y to gpu
if torch.cuda.is_available():
X = X.to('cuda', dtype=torch.float32)
y = y.to('cuda', dtype=torch.float32)
# Compute prediction and loss
pred = model(X)
param_iter = model.parameters()
# loss = loss_fn(pred, y) + lambda_val*l2_penalty(next(param_iter), next(param_iter))
# next(model.parameters())
loss = loss_fn(pred, y) + lambda_val*l2_penalty(next(model.parameters()))
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss_sum += loss.item()
if batch % 2 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
print(f"Train Error: \n Avg loss: {train_loss_sum/num_batches:>8f} \n")
return train_loss_sum/num_batches
def test(dataloader, model, loss_fn):
num_batches = test_examples / batch_size
test_loss = 0
with torch.no_grad():
for X, y in dataloader:
# move X, y to gpu
if torch.cuda.is_available():
X = X.to('cuda', dtype=torch.float32)
y = y.to('cuda', dtype=torch.float32)
pred = model(X)
test_loss += loss_fn(pred, y).item()
test_loss /= num_batches
print(f"Test Error: \n Avg loss: {test_loss:>8f} \n")
return test_loss
if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(device))
num_inputs = 200
true_w = np.ones(num_inputs) * 0.01
true_b = 0.78
test_examples = 100
train_examples = 20
num_examples = test_examples + train_examples
f1, labels = synthetic_data(true_w, true_b, num_examples)
print(f1.shape)
print(labels.shape)
l1_loss_fn = torch.nn.MSELoss()
learning_rate = 0.01
model = TestNet(num_inputs)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=0)
model = model.to(device)
print(model)
epochs = 100
model.train()
batch_size = 5
train_data = (torch.tensor(f1[:train_examples,]), torch.tensor(labels[:train_examples,]))
test_data = (torch.tensor(f1[train_examples:,]), torch.tensor(labels[train_examples:,]))
train_dataloader = load_array(train_data ,batch_size, True)
test_dataloader = load_array(test_data ,batch_size, True)
# verify dataloader
# for x,y in train_dataloader:
# print(x.shape)
# print(y.shape)
# print(torch.matmul( x , torch.tensor(true_w)) + torch.tensor(true_b))
# print(y)
# break
param_iter = model.parameters()
print('W = ')
print(next(param_iter).shape)
print('b = ')
print(next(param_iter).dtype)
model.train()
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
train_l = train(train_dataloader, model, l1_loss_fn, optimizer, lambda_val=3)
test_l = test(test_dataloader, model, l1_loss_fn)
ydata0.append(train_l*10)
ydata1.append(test_l*10)
xdata0.append(t)
xdata1.append(t)
# print(test_l)
# print(train_l)
print("Done!")
init_and_show()
param_iter = model.parameters()
# print('W = ')
# print(next(param_iter).shape)
# print('b = ')
# print(next(param_iter).shape)
print('w的L2范数是:', np.linalg.norm(next(param_iter).to('cpu').detach().numpy()))
print('b的L2范数是:', np.linalg.norm(next(param_iter).to('cpu').detach().numpy()))
过拟合
这个时候是未添加l2到损失函数的。
train函数如下:
train_l = train(train_dataloader, model, l1_loss_fn, optimizer, lambda_val=0)
训练结果如下,存在严重的过拟合现象:
权重衰减
我们先对w进行权重衰减。
train函数如下:
train_l = train(train_dataloader, model, l1_loss_fn, optimizer, lambda_val=3)
训练结果如下,过拟合现象出现了缓解:
权重衰减适应性
我们对w和b同时进行权重衰减。train函数如下:
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=3)
train_l = train(train_dataloader, model, l1_loss_fn, optimizer, lambda_val=0)
训练结果如下,我们发现,过拟合现象并没有缓解:
就是上图引起了我的兴趣,因为我们引入了权重衰减,但是其并没有缓解,这是为什么呢?还记得我们权重衰减的目标是将权重的范数逼*于0吗?但是我们b是一个不接*于0的常量,因此过拟合并没有缓解。
我们对w和b同时进行权重衰减。我们修改,train函数如下,主要将true_b调整为接*于0,这样我们同时对w,b进行衰减就是合理的:
true_b = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=3)
train_l = train(train_dataloader, model, l1_loss_fn, optimizer, lambda_val=0)
我们通过上面两张图的结果,说明的权重衰减的适应性以及目标。注意我们一般情况下不会对b进行权重衰减,因为其是常量。我看学*资料上并没有介绍为什么偏置不能够进行权重衰减,这里我做的这个实验可以当做一个原因吧。
pytorch的优化器里面的weight_decay参数是对所有参数进行衰减,要注意这个问题,若想单独对w进行衰减,请分别对不同的参数设定不同的优化器。这一块网上资料很多,我就不多说了。
Dropout
首先,Dropout是在([Srivastava et al., 2014] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929‒1958.)一文中引出的。
对于Dropout,我们可以从资料里面的代码里面看到其相关的原理:
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
# 在本情况中,所有元素都被丢弃。
if dropout == 1:
return np.zeros_like(X)
# 在本情况中,所有元素都被保留。
if dropout == 0:
return X
mask = np.random.uniform(0, 1, X.shape) > dropout
print(mask.astype(np.float32))
return mask.astype(np.float32) * X / (1.0 - dropout)
其工作如下:在训练的时候,按照传入的概率p丢弃一部分输出,并除以1-p。在测试的时候,跳过dropout_layer。其能正常工作的关键就是‘玄学’,打破了前一层和后一层的特定关联,破坏了两层之间的特定关联,缓解了过拟合。这个部分,建议多体会,虽然随机置0了部分值,但是输出规模是的趋势是一定的。
虽然我们从这里说明了其生效的原理,但是我们并没有解释为啥这样写是合理的?注意为何我们要在训练的时候除以1-p呢?
其实我们可以看到,Dropout是针对输出的,当我们只要保证训练和测试的输出规模保持一致,就可以保证测试和训练的结果是一致的。这里的规模保持一致,其实就是他们两个的期望保持一致。定义输入为X, dropout概率为p(以p的概率丢弃),那么\(E(x) = ((1-p)X + p*0)/(1-p) = X\)。因此,我们也可以得到结论,我们在训练时dropout生效,测试时直接跳过dropout层,这两种情况下的X的规模是一致的,不影响我们的网络结果。
此外,我们从这里可以看到,dropout是以概率来丢弃相关的输入X,那么我们必须在X规模足够大的情况下使用dropout,才能保证剩下的X能够学到足够的特征。因此,我们平常一般把dropout放在全连接层后。
下面,我们自己构造一个分类网络,使用FashionMNIST数据集(60000训练,10000测试)。然后在全连接层后面接dropout层,默认是不丢弃任何项,dropout的p=0,代码如下:
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
from torch.utils import data
from matplotlib.pyplot import MultipleLocator
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
fig, ax = plt.subplots()
xdata, ydata = [[], [], [], []], [[], [], [], []]
line0, = ax.plot([], [], 'r-', label='TrainError')
line1, = ax.plot([], [], 'b-', label='TrainAcc')
line2, = ax.plot([], [], 'g-', label='TestError')
line3, = ax.plot([], [], 'y-', label='TestAcc')
def init_and_show():
ax.set_xlabel('epoch')
ax.set_ylabel('loss/acc')
ax.set_title('Train/Test Loss/Acc')
ax.set_xlim(0, epochs)
ax.set_ylim(0, 1)
# ax.set_yscale('log')
# y_locator = MultipleLocator(0.1)
# ax.yaxis.set_major_locator(y_locator)
ax.legend([line0, line1, line2, line3], ('TrainError', 'TrainAcc', "TestError", "TestAcc"))
# ax.legend([line1], ('TestError', ))
line0.set_data(xdata[0], ydata[0])
line1.set_data(xdata[1], ydata[1])
line2.set_data(xdata[2], ydata[2])
line3.set_data(xdata[3], ydata[3])
plt.show()
def dropout_layer(X, dropout):
assert 0 <= dropout <= 1
# 在本情况中,所有元素都被丢弃。
if dropout == 1:
return np.zeros_like(X)
# 在本情况中,所有元素都被保留。
if dropout == 0:
return X
mask = np.random.uniform(0, 1, X.shape) > dropout
print(mask.astype(np.float32))
return mask.astype(np.float32) * X / (1.0 - dropout)
class TestNet(nn.Module):
def __init__(self, dropout_p_arr = [0, 0]):
super(TestNet, self).__init__()
self.test_net = nn.Sequential(
torch.nn.Linear(1*28*28, 512),
torch.nn.ReLU(),
torch.nn.Dropout(dropout_p_arr[0]),
torch.nn.Linear(512, 512),
torch.nn.ReLU(),
torch.nn.Dropout(dropout_p_arr[1]),
torch.nn.Linear(512, 10),
)
def forward(self, x):
# print(x.dtype)
#
return self.test_net(x)
def LoadFashionMNISTByTorchApi():
resize=28
trans = [transforms.ToTensor()]
if resize:
trans.insert(0, transforms.Resize(resize))
trans = transforms.Compose(trans)
# 60000*28*28
training_data = datasets.FashionMNIST(
root="..\data",
train=True,
download=True,
transform=trans
)
# 10000*28*28
test_data = datasets.FashionMNIST(
root="..\data",
train=False,
download=True,
transform=trans
)
# labels_map = {
# 0: "T-Shirt",
# 1: "Trouser",
# 2: "Pullover",
# 3: "Dress",
# 4: "Coat",
# 5: "Sandal",
# 6: "Shirt",
# 7: "Sneaker",
# 8: "Bag",
# 9: "Ankle Boot",
# }
# figure = plt.figure(figsize=(8, 8))
# cols, rows = 3, 3
# for i in range(1, cols * rows + 1):
# sample_idx = torch.randint(len(training_data), size=(1,)).item()
# img, label = training_data[sample_idx]
# figure.add_subplot(rows, cols, i)
# plt.title(labels_map[label])
# plt.axis("off")
# plt.imshow(img.squeeze(), cmap="gray")
# plt.show()
return training_data, test_data
def train(dataloader, model, loss_fn, optimizer):
num_batches = len(dataloader)
size = num_batches*batch_size
train_loss_sum = 0
train_acc_sum = 0
for batch, (X, y) in enumerate(dataloader):
# move X, y to gpu
if torch.cuda.is_available():
X = X.to('cuda', dtype=torch.float32)
y = y.to('cuda')
# Compute prediction and loss
pred = model(X.reshape(batch_size, -1))
# print(pred.shape)
# print(y.shape)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss_sum += loss.item()
# cal train acc
pred = model(X.reshape(batch_size, -1))
train_acc_sum += (pred.argmax(1) == y).type(torch.float).sum().item()/batch_size
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
print(f"Train Error: \n Avg loss: {train_loss_sum/num_batches:>8f} \n")
print(f"Train Acc : \n Avg acc : {train_acc_sum/num_batches:>8f} \n")
return train_loss_sum/num_batches, train_acc_sum/num_batches
def test(dataloader, model, loss_fn):
num_batches = len(dataloader)
test_loss = 0
test_acc = 0
with torch.no_grad():
for X, y in dataloader:
# move X, y to gpu
if torch.cuda.is_available():
X = X.to('cuda', dtype=torch.float32)
y = y.to('cuda')
pred = model(X.reshape(batch_size, -1))
test_loss += loss_fn(pred, y).item()
test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()/batch_size
test_loss /= num_batches
test_acc /= num_batches
print(f"Test Error: \n Avg loss: {test_loss:>8f} \n")
print(f"Test Acc : \n Avg loss: {test_acc:>8f} \n")
return test_loss, test_acc
if __name__ == '__main__':
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} device'.format(device))
loss_fn = torch.nn.CrossEntropyLoss()
learning_rate = 0.5
# [0.4, 0.7]
model = TestNet()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=0)
model = model.to(device)
print(model)
epochs = 10
model.train()
batch_size = 200
train_data, test_data = LoadFashionMNISTByTorchApi()
train_dataloader = DataLoader(train_data, batch_size, shuffle=True)
test_dataloader = DataLoader(test_data, batch_size, shuffle=True)
print(len(train_dataloader))
print(len(test_dataloader))
# #verify dataloader
# for x,y in train_dataloader:
# print(x.shape)
# print(y.shape)
# break
param_iter = model.parameters()
print(next(param_iter).shape)
for t in range(epochs):
print(f"Epoch {t+1}\n-------------------------------")
model.train()
train_l, train_acc = train(train_dataloader, model, loss_fn, optimizer)
model.eval()
test_l, test_acc = test(test_dataloader, model, loss_fn)
xdata[0].append(t)
xdata[1].append(t)
xdata[2].append(t)
xdata[3].append(t)
ydata[0].append(train_l)
ydata[1].append(train_acc)
ydata[2].append(test_l)
ydata[3].append(test_acc)
print("Done!")
init_and_show()
正常过拟合
直接用上面代码进行训练后得到结果如下:
我们可以发现,测试准确率比训练准确率低,满足过拟合的现象。
启用dropout
修改训练代码:
# [0.4, 0.7]
model = TestNet([0.4, 0.7])
训练结果如图:
我们可以很直观的发现,训练和测试的acc和error出现了重合的情况,至少证明了过拟合现象出现了缓解。
后记
对于权重衰减,一般就是要将参数的L2范数尽量学*来趋*于0,这样模型复杂度变小。此外权重衰减还可以将参数限制到一个稳定的范围,避免出现了较大的波动。对于稳定的学*过程是有帮助的。
对于Dropout来说,就是打破一些输出比较大的相关层的关联性,注意,其是针对输出,并不是针对权重。有些时候,相关层的关联性就是我们要学的,但是有些时候,这种关联性可能就是不需要的,所以通过这种‘玄学’的方式,在训练的时候,以概率性来丢弃某些输出,打破这项输出和下一层的关联性。这对于大的网络来说,是有意义的。
参考文献
- https://github.com/d2l-ai/d2l-zh/releases (V1.0.0)
- https://github.com/d2l-ai/d2l-zh/releases (V2.0.0 alpha1)
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929‒1958.
打赏、订阅、收藏、丢香蕉、硬币,请关注公众号(攻城狮的搬砖之路)
PS: 请尊重原创,不喜勿喷。
PS: 要转载请注明出处,本人版权所有。
PS: 有问题请留言,看到后我会第一时间回复。
DL基础补全计划(四)---对抗过拟合:权重衰减、Dropout的更多相关文章
- DL基础补全计划(二)---Softmax回归及示例(Pytorch,交叉熵损失)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- DL基础补全计划(三)---模型选择、欠拟合、过拟合
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- DL基础补全计划(六)---卷积和池化
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- DL基础补全计划(一)---线性回归及示例(Pytorch,平方损失)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- DL基础补全计划(五)---数值稳定性及参数初始化(梯度消失、梯度爆炸)
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明 本文作为本人csdn blog的主站的备份.(Bl ...
- OSPF补全计划-0 preface
哇靠,一看日历吓了我一跳,我这一个月都没写任何东西,好吧,事情的确多了点儿,同事离职,我需要处理很多untechnical的东西,弄得我很烦,中间学的一点小东西(关于Linux的)也没往这里记,但是我 ...
- 【hjmmm网络流24题补全计划】
本文食用方式 按ABC--分层叙述思路 可以看完一步有思路后自行思考 飞行员配对问题 题目链接 这可能是24题里最水的一道吧... 很显然分成两个集合 左外籍飞行员 右皇家飞行员 跑二分图最大匹配 输 ...
- 2018.我的NOIP补全计划
code: efzoi.tk @ shleodai noip2011 D1 选择客栈 这道题是一道大水题,冷静分析一会就会发现我们需要维护最后一个不合法点和前缀和. 维护最后一个不合法点只要边扫描边维 ...
- OSPF补全计划-2
想起来几个面试题: 1. OSPF在什么情况下会stuck in Exstart /Exchange状态? 我知道的一个答案是两个端口的mtu不一致.当然整个也不是绝对,因为可以用ip ospf mt ...
- OSPF补全计划-1
OSPF全称是啥我就不絮叨了,什么迪杰斯特拉,什么开放最短路径优先算法都是人尽皆知的事儿,尤其是一提算法还会被学数据结构的童鞋鄙视,干脆就不提了,直接开整怎么用吧.(不过好像真有人不知道OSPF里的F ...
随机推荐
- dotnet-cnblog tool 测试案例
这是测试donet-cnblog工具是否能将正常的Typora图片转换为博客园格式 测试1:本地图片导入 测试2:QQ截图 测试3:url https://pics3.baidu.com/feed/9 ...
- NC25084 [USACO 2006 Nov S]Bad Hair Day
题目 题目描述 Some of Farmer John's N cows (1 ≤ N ≤ 80,000) are having a bad hair day! Since each cow is s ...
- NC24870 [USACO 2009 Dec G]Video Game Troubles
题目链接 题目 题目描述 Farmer John's cows love their video games! FJ noticed that after playing these games th ...
- Linux进程通信 | 管道与FIFO
Linux进程间通信通常使用的方式有很多种,其中比较常用的包括管道(pipe)和 FIFO(命名管道).本文将介绍这两种通信方式的基本概念,并用C语言编写示例代码,来说明如何在两个进程之间使用这些IP ...
- Java线程状态(生命周期)--一篇入魂
1.线程状态(生命周期) 一个线程在给定的时间点只能处于一种状态. 线程可以有如下6 种状态: New (新创建):未启动的线程: Runnable (可运行):可运行的线程,需要等待操作系统资源: ...
- java 从零开始手写 redis(十)缓存淘汰算法 LFU 最少使用频次
前言 java从零手写实现redis(一)如何实现固定大小的缓存? java从零手写实现redis(三)redis expire 过期原理 java从零手写实现redis(三)内存数据如何重启不丢失? ...
- ELK查询和汇总
查询表明细: ELK的KQL样例,显示时间请选择最近15天: 样例1:查询ol_lc 表增删改查,不是jy2_rw的账号明细 KQL:(ol_lc or oc.ol_lc) and (select o ...
- JetBrains全系列软件激活教程激活码以及JetBrains系列软件汉化包
最新激活方式 如果安装过无限试用.修改过 hosts 请先卸载干净旧版本再安装,否需无法激活! 以 WebStorm 为例 JetBrains官网 https://www.jetbrains.com/ ...
- 如何在 WindowManager.addView 中使用 Jetpack Compose
如何在 WindowManager.addView 中使用 Jetpack Compose 一.引出问题 Android 开发中,很常见的一个场景,通过 WindowManager.addView() ...
- RabbitMQ零碎整理,总有一天在你工作中会用到
概念 MQ:消息队列(消息中间件),开源的基于AMQP协议的消息中间件,异步 解耦 削峰 核心作用:1.异步 2.解耦 3.消息通信 RabbitMQ 消息的类型:1.点对点 2.Worker 3.发 ...