T1004 游戏(HDU 7460)

注意到对于两个人,他们 \(t\) 轮后能力值相同的概率只与他们初始时的能力差有关,所以我们先 \(\text{FFT}\) 求出 \(|a_i - a_j| = k\) 的 \((i, j)\) 对数。

构造多项式 \(F(x) = (p_1 x^2 + p_2 + p_3x)\),其中 \(p_1, p_2, p_3\),分别表示在一轮中两个人相对能力值变化为 \(+1/-1/0\) 的概率,这三个数容易用 \(n\) 表示,我们现在的任务是 \(\forall k \in [0, V)\),求 \([x^{t + k}] F(x)^t\)。

令 \(G(x) = F(x)^t\),考虑对 \(G\) 求导,我们有 \(G'(x) = t \times F'(x) \times F(x)^{t - 1} \iff G'(x) \times F(x) = t \times F'(x) \times G(x)\),将 \(F\) 和 \(F'\) 展开可得 \(G'(x) \times (p_1 x^2 + p_2 + p_3x) = t \times (2p_1x + p_3) \times G(x)\),取 \(G\) 的 \(i\) 次项系数即可得到 \(G\) 的系数的递推式。

时间复杂度 \(O(V \log V + t)\)。

Code
#include <iostream>
#include <vector>
#include <algorithm>
#include <complex>
#include <cmath> using namespace std;
using LL = long long;
using Cp = complex<double>; const int N = 1e6 + 5, T = 2e7 + 5;
const int Mod = 998244353; int power (int x, int y = Mod - 2) {
int res = 1;
while (y) {
if (y & 1) {
res = 1ll * res * x % Mod;
}
x = 1ll * x * x % Mod;
y >>= 1;
}
return res;
} int m, t;
int inv[T], g[T];
LL a[N]; namespace FFT {
const double pi = acos(-1);
int len = 1;
vector<int> r; void FFT (vector<Cp> &a, int v) {
for (int i = 0; i < len; ++i) {
if (i < r[i]) {
swap(a[i], a[r[i]]);
}
}
for (int i = 1; i < len; i <<= 1) {
for (int j = 0; j < len; j += (i << 1)) {
for (int k = 0; k < i; ++k) {
Cp p = a[j + k], q = Cp(cos(pi * k / i), sin(pi * k / i) * v) * a[j + k + i];
a[j + k] = p + q, a[j + k + i] = p - q;
}
}
}
} vector<LL> convolution (vector<int> &a, vector<int> &b) {
int n = a.size() - 1, m = b.size() - 1;
for (; len <= n + m; len <<= 1) {
}
a.resize(len), b.resize(len), r.resize(len);
vector<Cp> A(len);
for (int i = 0; i < len; ++i) {
A[i] = Cp(a[i], b[i]);
r[i] = (r[i >> 1] >> 1) | (i & 1) * (len >> 1);
}
FFT(A, 1);
for (int i = 0; i < len; ++i) {
A[i] *= A[i];
}
FFT(A, -1);
vector<LL> res(n + m + 1);
for (int i = 0; i <= n + m; ++i) {
res[i] = LL(A[i].imag() / len / 2 + 0.5);
}
return res;
}
} int main () {
ios::sync_with_stdio(0);
cin.tie(0); cout.tie(0);
inv[1] = 1;
for (int i = 2; i < T; ++i) {
inv[i] = 1ll * (Mod - Mod / i) * inv[Mod % i] % Mod;
}
int tmpn;
cin >> tmpn >> t;
vector<int> arr(tmpn);
for (int i = 0; i < tmpn; ++i) {
cin >> arr[i];
m = max(m, arr[i]);
}
vector<int> c(m + 1);
for (auto x : arr) {
++c[x];
}
for (auto t : c) {
a[0] += 1ll * (t - 1) * t / 2;
}
vector<int> _c = c;
reverse(_c.begin(), _c.end());
vector<LL> z = FFT::convolution(c, _c);
for (int i = 1; i < m; ++i) {
a[i] += z[i + m];
}
--m;
int p1 = 2ll * (tmpn - 2) * inv[tmpn] % Mod * inv[tmpn - 1] % Mod, p2 = p1, p3 = (1 - p1 * 2 + Mod * 2) % Mod;
int p1i = 1ll * power(p1) * (Mod - 1) % Mod;
g[t * 2] = power(p1, t);
if (t) g[t * 2 - 1] = 1ll * power(p1, t - 1) * p3 % Mod * t % Mod;
for (int i = t * 2 - 1; i >= t; --i) {
g[i - 1] = ((1ll * (t - i + Mod) * p3 % Mod * g[i] - 1ll * (i + 1) * p2 % Mod * g[i + 1] + 1ll * Mod * Mod) % Mod) * inv[t * 2 + 1 - i] % Mod * p1i % Mod;
}
int ans = 0;
for (int i = 0; i <= min(t, m); ++i) {
ans = (ans + 1ll * g[i + t] * (a[i] % Mod)) % Mod;
}
cout << ans << '\n';
return 0;
}

T1005 数论(HDU 7461)

考虑固定一个端点向左/右扫,可以得到 \(O(\log n)\) 个 \(\gcd\) 相同的段(\(\gcd\) 每次变化至少减半),每段形如 \((g, l, r, t)\),表示一个端点为 \(t\),另一个端点在 \([l, r]\) 中,这样构成的区间都满足 \(\gcd = g\),总段数 \(O(n \log n)\),找段考虑二分 + ST 表,时间复杂度 \(O(n \log^2 n)\)。

对答案进行容斥,算出总方案数和不包含 \(i\) 的方案数,不包含一个数又可以拆成一段前缀和一段后缀任选,所以我们只需对前缀和后缀分别做 \(\text{dp}\) 即可。

对于前缀而言,我们枚举 \(\gcd\) 然后分别算贡献,对于某个 \(\gcd = g\) 有若干段 \((l, r, t)\),我们按 \(t\) 排序,设 \(f_i\) 表示在 \([1, i]\) 中选若干满足 \(\gcd = g\) 的不交区间,最后一个区间右端点为 \(i\) 的方案数,转移方程是 \(f_t = \sum\limits_{i = l}^{r} \sum\limits_{j = 0}^{i - 1} f_j\)。考虑一个 \(f_j\) 的贡献,对于 \(j < l\),\(f_j\) 系数为 \(r - l + 1\),对于 \(j \in [l, r]\),\(f_j\) 系数构成公差为 \(-1\),末项为 \(0\) 的等差数列。相当于单点修改,区间和,区间等差数列加权和,线段树容易维护。

后缀类似,设 \(g_i\) 表示在 \([i, n]\) 中选若干满足 \(\gcd = g\) 的不交区间,第一个区间以 \(i\) 为左端点的方案数,再开一棵线段树维护即可。

时间复杂度 \(O(n \log^2 n)\)。

Code
#include <iostream>
#include <algorithm>
#include <cmath>
#include <vector>
#include <map>
#include <chrono>
#include <cassert> #define lc (k << 1)
#define rc ((k << 1) | 1) using namespace std;
using LL = long long;
using uLL = unsigned long long; uLL Get_time () { return chrono::steady_clock::now().time_since_epoch().count(); } const int N = 1e5 + 5, M = 17;
const int Mod = 998244353; int n, allsum;
int a[N], st[N][M], diff[N]; struct Tr {
int l, r, t;
}; namespace Pre_Seg {
const int T = N * 4; struct Tree {
int sum[T], rsum[T], len[T]; void Build (int k, int L = 0, int R = n) {
len[k] = R - L + 1;
if (L == R) return;
int mid = (L + R) >> 1;
Build(lc, L, mid);
Build(rc, mid + 1, R);
} void Modify (int k, int x, int y, int L = 0, int R = n) {
if (L == R) {
sum[k] = y;
return;
}
int mid = (L + R) >> 1;
if (x <= mid) {
Modify(lc, x, y, L, mid);
}
else {
Modify(rc, x, y, mid + 1, R);
}
sum[k] = (sum[lc] + sum[rc]) % Mod;
rsum[k] = (rsum[lc] + rsum[rc] + 1ll * sum[lc] * len[rc]) % Mod;
} LL Query_sum (int k, int l, int r, int L = 0, int R = n) {
if (l > r) return 0;
if (l <= L && r >= R) {
return sum[k];
}
int mid = (L + R) >> 1;
LL res = 0;
if (l <= mid) {
res = (res + Query_sum(lc, l, r, L, mid));
}
if (r > mid) {
res = (res + Query_sum(rc, l, r, mid + 1, R));
}
return res;
} LL Query_rsum (int k, int l, int r, int L = 0, int R = n) {
if (l <= L && r >= R) {
return (rsum[k] + 1ll * (r - R) * sum[k]) % Mod;
}
int mid = (L + R) >> 1;
LL res = 0;
if (l <= mid) {
res = (res + Query_rsum(lc, l, r, L, mid));
}
if (r > mid) {
res = (res + Query_rsum(rc, l, r, mid + 1, R));
}
return res;
}
};
} namespace Suf_Seg {
const int T = N * 4; struct Tree {
int sum[T], rsum[T], len[T]; void Build (int k, int L = 1, int R = n + 1) {
len[k] = R - L + 1;
if (L == R) return;
int mid = (L + R) >> 1;
Build(lc, L, mid);
Build(rc, mid + 1, R);
} void Modify (int k, int x, int y, int L = 1, int R = n + 1) {
if (L == R) {
sum[k] = y;
return;
}
int mid = (L + R) >> 1;
if (x <= mid) {
Modify(lc, x, y, L, mid);
}
else {
Modify(rc, x, y, mid + 1, R);
}
sum[k] = (sum[lc] + sum[rc]) % Mod;
rsum[k] = (rsum[lc] + rsum[rc] + 1ll * len[lc] * sum[rc]) % Mod;
} LL Query_sum (int k, int l, int r, int L = 1, int R = n + 1) {
if (l > r) return 0;
if (l <= L && r >= R) {
return sum[k];
}
int mid = (L + R) >> 1;
LL res = 0;
if (l <= mid) {
res = (res + Query_sum(lc, l, r, L, mid));
}
if (r > mid) {
res = (res + Query_sum(rc, l, r, mid + 1, R));
}
return res;
} LL Query_rsum (int k, int l, int r, int L = 1, int R = n + 1) {
if (l <= L && r >= R) {
return (rsum[k] + 1ll * (L - l) * sum[k]) % Mod;
}
int mid = (L + R) >> 1;
LL res = 0;
if (l <= mid) {
res = (res + Query_rsum(lc, l, r, L, mid));
}
if (r > mid) {
res = (res + Query_rsum(rc, l, r, mid + 1, R));
}
return res;
}
};
} Pre_Seg::Tree pret;
Suf_Seg::Tree suft; signed main () {
// freopen("tmp.in", "r", stdin);
// freopen("1005.out", "w", stdout);
cin.tie(0)->sync_with_stdio(0);
uLL st0 = Get_time();
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
pret.Build(1), pret.Modify(1, 0, 1);
suft.Build(1), suft.Modify(1, n + 1, 1);
for (int i = 1; i <= n; ++i) {
st[i][0] = a[i];
}
for (int k = 1; k < M; ++k) {
for (int i = 1; i + (1 << k) - 1 <= n; ++i) {
st[i][k] = __gcd(st[i][k - 1], st[i + (1 << (k - 1))][k - 1]);
}
}
auto Query = [&](int l, int r) -> int {
int k = log2(r - l + 1);
return __gcd(st[l][k], st[r - (1 << k) + 1][k]);
};
map<int, vector<Tr>> mpre;
map<int, vector<Tr>> msuf;
for (int i = 1; i <= n; ++i) {
for (int p = i, l = 1, r = p; p; p = l - 1, l = 1, r = p) {
int g = Query(p, i);
while (l <= r) {
int mid = (l + r) >> 1;
if (Query(mid, i) == g) {
r = mid - 1;
}
else {
l = mid + 1;
}
}
auto it = mpre.find(g);
if (it == mpre.end()) {
mpre.insert({g, vector<Tr>{{l, p, i}}});
}
else {
it->second.push_back({l, p, i});
}
}
for (int p = i, l = p, r = n; p <= n; p = r + 1, l = p, r = n) {
int g = Query(i, p);
while (l <= r) {
int mid = (l + r) >> 1;
if (Query(i, mid) == g) {
l = mid + 1;
}
else {
r = mid - 1;
}
}
auto it = msuf.find(g);
if (it == msuf.end()) {
msuf.insert({g, vector<Tr>{{p, r, i}}});
}
else {
it->second.push_back({p, r, i});
}
}
}
for (auto ipre = mpre.begin(), isuf = msuf.begin(); ipre != mpre.end(); ++ipre, ++isuf) {
assert(ipre->first == isuf->first);
vector<Tr> vp = ipre->second, sp = isuf->second;
sort(vp.begin(), vp.end(), [&](Tr i, Tr j) -> bool {
return i.t < j.t;
});
sort(sp.begin(), sp.end(), [&](Tr i, Tr j) -> bool {
return i.t > j.t;
});
vector<int> dpoint;
for (auto i : vp) {
dpoint.push_back(i.t);
int f = (pret.Query_sum(1, 0, i.l - 1) % Mod * (i.r - i.l + 1) + pret.Query_rsum(1, i.l, i.r)) % Mod;
pret.Modify(1, i.t, f);
allsum = (allsum + f) % Mod;
}
for (auto i : sp) {
dpoint.push_back(i.t);
int f = (suft.Query_sum(1, i.r + 1, n + 1) % Mod * (i.r - i.l + 1) + suft.Query_rsum(1, i.l, i.r)) % Mod;
suft.Modify(1, i.t, f);
}
sort(dpoint.begin(), dpoint.end());
dpoint.resize(unique(dpoint.begin(), dpoint.end()) - dpoint.begin());
int la = 0;
auto Range_add = [&](int l, int r) -> void {
if (l > r) return;
int x = ((pret.Query_sum(1, 1, l - 1) % Mod + 1) * (suft.Query_sum(1, l + 1, n) % Mod + 1) % Mod - 1 + Mod) % Mod;
diff[l] = (diff[l] + x) % Mod;
diff[r + 1] = (diff[r + 1] - x + Mod) % Mod;
};
for (auto i : dpoint) {
Range_add(la + 1, i - 1);
Range_add(i, i);
la = i;
}
Range_add(la + 1, n);
for (auto i : vp) {
pret.Modify(1, i.t, 0);
}
for (auto i : sp) {
suft.Modify(1, i.t, 0);
}
}
for (int i = 1; i <= n; ++i) {
diff[i] = (diff[i] + diff[i - 1]) % Mod;
}
for (int i = 1; i <= n; ++i) {
cout << (allsum - diff[i] + Mod) % Mod << ' ';
}
cout << '\n';
uLL ed0 = Get_time();
// cerr << "Time = " << (ed0 - st0) / int(1e6) << '\n';
return 0;
}

T1006 字符串(HDU 7462)

不会。

T1009 圣芙蕾雅(HDU 7465)

不会。

T1010 绘世之卷(HDU 7466)

首先带删除肯定是不好做的,考虑线段树分治一下,变成插入和撤销,这样我们只需在加入一个数时,算它和其他数的贡献。

根号分治,令 \(d = \lfloor \sqrt n \rfloor\)。注意到当集合大小 \(|S| > d\) 时,答案 \(\le d\),证明:容易说明一定存在一对 \((x, y)\) 满足 \(1 \le y - x \le d\),如果 \(x \le d\) 那么用 \(x\) 做被除数,否则用 \(y\) 做被除数即可。

当 \(|S| \le d\) 时直接暴力和每个元素匹配算贡献。当 \(|S| > d\) 时,分类讨论,假设当前加入的是 \(x\)。

  • 若 \(ky + r = x \iff ky = x - r\),枚举 \(r\),在插入 \(y\) 时预处理 \(k \in [0, d]\) 即可。
  • 若 \(kx + r = y\),枚举 \(k\),只需找到 \(kx\) 的前驱,插入一个数 \(y\) 时修改 \([y, y + d]\) 的前驱即可。

两种修改操作都方便撤销。

时间复杂度 \(O(n \sqrt n \log n)\)。

Code
#include <iostream>
#include <vector>
#include <set>
#include <cmath> using namespace std; #define lc (k << 1)
#define rc ((k << 1) | 1) const int N = 5e4 + 5, Inf = 1e9, T = N * 4;
const int S = 1e6; int n, d, q, cur, ans[N], pre[N], mik[N];
vector<int> vec[T];
set<int> st;
int len1, len2;
pair<int, int> stpre[S], stmik[S]; void Add (int k, int l, int r, int x, int L = 1, int R = q) {
if (l <= L && r >= R) {
vec[k].push_back(x);
return;
}
int mid = (L + R) >> 1;
if (l <= mid) {
Add(lc, l, r, x, L, mid);
}
if (r > mid) {
Add(rc, l, r, x, mid + 1, R);
}
} void Solve (int k, int L = 1, int R = q) {
int lst = cur, tmp1 = len1, tmp2 = len2;
for (auto x : vec[k]) {
if (st.size() >= d) {
for (int r = 0; r <= d && x - r; ++r) {
cur = min(cur, mik[x - r] + r);
}
for (int k = 0; k <= d && x * k <= n; ++k) {
cur = min(cur, x * k - pre[x * k] + k);
}
}
else {
for (auto y : st) {
cur = min(cur, min(x / y + x % y, y / x + y % x));
}
}
st.insert(x);
for (int k = 0; k <= d && x * k <= n; ++k) {
if (k < mik[x * k]) {
stmik[++len1] = {x * k, mik[x * k]};
mik[x * k] = k;
}
}
for (int i = x; i <= min(n, x + d); ++i) {
if (x > pre[i]) {
stpre[++len2] = {i, pre[i]};
pre[i] = x;
}
else {
break;
}
}
}
if (L == R)
ans[L] = cur;
else {
int mid = (L + R) >> 1;
Solve(lc, L, mid);
Solve(rc, mid + 1, R);
}
cur = lst;
for (auto x : vec[k])
st.erase(x);
for (; len1 > tmp1; --len1)
mik[stmik[len1].first] = stmik[len1].second;
for (; len2 > tmp2; --len2)
pre[stpre[len2].first] = stpre[len2].second;
} int main () {
cin.tie(0)->sync_with_stdio(0);
int T;
cin >> T;
while (T--) {
cin >> n >> q, d = sqrt(n);
vector<int> occ(n + 1, -1);
fill(vec + 1, vec + q * 4 + 1, vector<int>());
for (int o, x, i = 1; i <= q; ++i) {
cin >> o >> x;
if (o == 0) {
Add(1, occ[x], i - 1, x);
occ[x] = -1;
}
else {
occ[x] = i;
}
}
for (int i = 1; i <= n; ++i) {
if (occ[i] != -1) {
Add(1, occ[i], q, i);
}
}
fill(mik + 1, mik + n + 1, Inf);
fill(pre, pre + n + 1, -Inf);
cur = N, Solve(1);
for (int i = 1; i <= q; ++i) {
cout << (ans[i] == N ? -1 : ans[i]) << '\n';
}
}
return 0;
}

HDU-ACM 2024 Day3的更多相关文章

  1. hdu acm 1028 数字拆分Ignatius and the Princess III

    Ignatius and the Princess III Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ...

  2. HDU ACM 题目分类

    模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 104 ...

  3. hdu acm 1166 敌兵布阵 (线段树)

    敌兵布阵 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  4. hdu acm 2082 找单词

    找单词 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU ACM 1325 / POJ 1308 Is It A Tree?

    Is It A Tree? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  6. HDU ACM 1134 Game of Connections / 1130 How Many Trees?(卡特兰数)

    [题目链接]http://acm.hdu.edu.cn/showproblem.php?pid=1134 [解题背景]这题不会做,自己推公式推了一段时间,将n=3和n=4的情况列出来了,只发现第n项与 ...

  7. HDU ACM Eight

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043 解题背景: 看到八数码问题,没有任何的想法,偶然在翻看以前做的题的时候发现解决过类似的一道题,不 ...

  8. HDU ACM 1690 Bus System (SPFA)

    Bus System Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. HDU ACM 1224 Free DIY Tour (SPFA)

    Free DIY Tour Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  10. HDU ACM 1869 六度分离(Floyd)

    六度分离 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

随机推荐

  1. 【Redis】03 Redis 数据类型、相关补充、常用命令

    redis的数据类型 1,概述 使用Redis进行应用设计和开发的一个核心概念是数据类型. 与关系数据库不同,在Redis中不存在需要我们担心的表, 在使用Redis进行应用设计和开发时,我们首先应该 ...

  2. 【Layui】05 进度条 Progress

    文档地址: https://www.layui.com/doc/element/progress.html 演示案例: <div class="layui-progress" ...

  3. 使用Transformer模型实现四足机器人控制—— 跨模态Transformer: LocoTransformer —— LEARNING VISION-GUIDED QUADRUPEDAL LOCOMOTION END-TO-END WITH CROSS-MODAL TRANSFORMERS

    论文: LEARNING VISION-GUIDED QUADRUPEDAL LOCOMOTION END-TO-END WITH CROSS-MODAL TRANSFORMERS 发表于ICLR20 ...

  4. 《Python数据可视化之matplotlib实践》 源码 第四篇 扩展 第十章

    图 10.1 import matplotlib.pyplot as plt import numpy as np plt.axes([0.1, 0.7, 0.3, 0.3], frameon=Tru ...

  5. VcXsrv: 一个好用的Windows X11 Server

    windows10没有系统自带的X11服务器,使用了几款X11的windows下X11服务器软件后发现了一个好用的软件--VcXsrv. 下载地址: https://sourceforge.net/p ...

  6. 微信支付APIV3私钥与证书配置

    1.加载商户私钥(privateKey:私钥字符串) 这个私钥是下载证书的的:apiclient_key.pem 2.转换下单时的证书 文档:https://github.com/wechatpay- ...

  7. .Net Aspire次体验

    上次用上了在微软MVP的带领下用上了Aspire,在开发阶段隐藏了细节,什么都不用做,点个调试按钮就跑起来了,可是部署时出现了难题, 因为发布时只能选择Azure环境,为此注册了Azure,开了科网. ...

  8. jQuery的基本操作总结

    什么是jquery? 就是一个用js的插件库   解决了原生dom的操作的兼容性和代码量 使用前需要引入它的js库 以下例子以 jQuery1.12.4.js  这个版本为例 一:jQuery入口函数 ...

  9. SMU Summer 2023 Contest Round 3

    SMU Summer 2023 Contest Round 3 A. Curriculum Vitae 题意就是要求\(1\)后面不能有\(0\)的情况下的子序列最长长度, 也就是求一个最长不下降子序 ...

  10. 为什么重写hashCode一定也要重写equals方法?

    这是一个经典的问题,我们先从==开始看起 == "==" 是运算符 如果比较的对象是基本数据类型,则比较的是其存储的值是否相等: 如果比较的是引用数据类型,则比较的是所指向对象的地 ...