三维医学图像深度学习,数据增强方法(monai):RandHistogramShiftD, Flipd, Rotate90d
#coding:utf-8
import torch
from monai.transforms import Compose, RandHistogramShiftD, Flipd, Rotate90d
import matplotlib.pyplot as plt
import SimpleITK as sitk
# start a chain of transforms
KEYS = ("image", "label")
class aug():
def __init__(self):
self.random_rotated = Compose([
Rotate90d(KEYS, k=1, spatial_axes=(2,3),allow_missing_keys=True),
Flipd(KEYS, spatial_axis=(1,2,3),allow_missing_keys=True),
RandHistogramShiftD(KEYS, prob=1, num_control_points=30, allow_missing_keys=True),
# ToTensorD(KEYS),
])
def forward(self,x):
x = self.random_rotated(x)
return x # start a dataset
def save(before_x, after_x, new_path,new_name=""):
after_x = after_x[0, 0,...]
if new_name=="image":
ct = sitk.ReadImage(before_x, sitk.sitkInt16)
else:
ct = sitk.ReadImage(before_x, sitk.sitkUInt8)
predict_seg = sitk.GetImageFromArray(after_x)
predict_seg.SetDirection(ct.GetDirection())
predict_seg.SetOrigin(ct.GetOrigin())
predict_seg.SetSpacing(ct.GetSpacing()) sitk.WriteImage(predict_seg,new_path) if __name__ == "__main__":
image = r"D:\MyData\3Dircadb1_fusion_date\image_2.nii" # 原图
label = r"D:\MyData\3Dircadb1_fusion_date\liver_2.nii" #标签
new_path = r"D:\MyData\3Dircadb1_fusion_date\image_0.nii" #增强后的原图
new_path1 = r"D:\MyData\3Dircadb1_fusion_date\liver_1.nii" #增强后的标签 ct = sitk.ReadImage(image)
ct1 = sitk.GetArrayFromImage(ct)
seg = sitk.ReadImage(label)
seg1 = sitk.GetArrayFromImage(seg) ct = ct1[None, None,...]
seg = seg1[None, None,...] ct = torch.from_numpy(ct)
seg = torch.from_numpy(seg)
m = {"image": ct,
"label":seg}
augs = aug()
print(m["image"].shape)
data_dict= augs.forward(m) save(image, data_dict["image"], new_path, "image")
save(label, data_dict["label"], new_path1, "label") print(data_dict["image"].shape)
plt.subplots(1, 3)
plt.subplot(1, 3, 1);
plt.imshow(ct1[66,...])
plt.subplot(1, 3, 2);
plt.imshow(data_dict["image"][0,0, 66,...])
plt.subplot(1, 3, 3);
plt.imshow(data_dict["label"][0,0, 66,...])
plt.show()
三维医学图像深度学习,数据增强方法(monai):RandHistogramShiftD, Flipd, Rotate90d的更多相关文章
- YoloV4当中的Mosaic数据增强方法(附代码详细讲解)码农的后花园
上一期中讲解了图像分类和目标检测中的数据增强的区别和联系,这期讲解数据增强的进阶版- yolov4中的Mosaic数据增强方法以及CutMix. 前言 Yolov4的mosaic数据增强参考了CutM ...
- 深度学习数据特征提取:ICCV2019论文解析
深度学习数据特征提取:ICCV2019论文解析 Goal-Driven Sequential Data Abstraction 论文链接: http://openaccess.thecvf.com/c ...
- GridMask:一种数据增强方法
GridMask Data Augmentation, ARXIV 2020 代码地址:https://github.com/akuxcw/GridMask 这篇论文提出了一种简单的数据增强方法,在图 ...
- Generalizing from a Few Examples: A Survey on Few-Shot Learning 小样本学习最新综述 | 三大数据增强方法
目录 原文链接:小样本学习与智能前沿 01 Transforming Samples from Dtrain 02 Transforming Samples from a Weakly Labeled ...
- go微服务框架go-micro深度学习(四) rpc方法调用过程详解
上一篇帖子go微服务框架go-micro深度学习(三) Registry服务的注册和发现详细解释了go-micro是如何做服务注册和发现在,服务端注册server信息,client获取server的地 ...
- 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks
本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...
- 深度学习Momentum(动量方法)
转自:http://blog.csdn.net/bvl10101111/article/details/72615621 先上结论: 1.动量方法主要是为了解决Hessian矩阵病态条件问题(直观上讲 ...
- 深度学习----Xavier初始化方法
“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...
- 深度学习——Xavier初始化方法
“Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training deep feedf ...
- TensorFlow之DNN(三):神经网络的正则化方法(Dropout、L2正则化、早停和数据增强)
这一篇博客整理用TensorFlow实现神经网络正则化的内容. 深层神经网络往往具有数十万乃至数百万的参数,可以进行非常复杂的特征变换,具有强大的学习能力,因此容易在训练集上过拟合.缓解神经网络的过拟 ...
随机推荐
- .NET 权限工作流框架 TOP 榜
前言 .NET权限管理及快速开发框架.最好用的权限工作流系统. 基于经典领域驱动设计的权限管理及快速开发框架,源于Martin Fowler企业级应用开发思想及最新技术组合(SqlSugar.EF.Q ...
- Android 性能稳定性测试工具 mobileperf 开源 (天猫精灵 Android 性能测试-线下篇)
Android 性能稳定性测试工具 mobileperf 开源 (天猫精灵 Android 性能测试-线下篇) 这篇文章写得很好!感谢阿里云开发者社区!!! 原文地址: https://develop ...
- Jmeter函数助手38-isVarDefined
isVarDefined函数用于判断变量是否存在. 变量的名称:填入变量名称.如果变量存在返回true,如果不存在返回false 1.先一些定义变量 ${__isVarDefined(now)},no ...
- 【PostgreSQL】下载安装PgSQL
官网下载地址: https://www.enterprisedb.com/downloads/postgres-postgresql-downloads Windows平台 官网直接提供exe安装包, ...
- 【爬虫】Python获取星巴克所有产品
视频只介绍了BS4的简单使用,但我想全部获取出来 其实翻看接口,直接有一个json资源提供了这些数据,但是没有分类 import re import urllib.request from bs4 i ...
- Reinforcement 代码库
https://github.com/dragen1860?tab=repositories https://github.com/awjuliani?tab=repositories https:/ ...
- 《Python数据可视化之matplotlib实践》 源码 第四篇 扩展 第十三章
图 13.10 import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np mpl.rcParams[&q ...
- pytorch之网络参数统计 torchstat & torchsummary
参考 : https://blog.csdn.net/weixin_45292794/article/details/108227437 https://blog.csdn.net/jzwong/ar ...
- C# Cefsharp 如何利用[Attribute]的把C#中的方法给到浏览器中调用
背景 "有没有遇见这样一个场景,需要注入到浏览器的类太多,又想统一管理且不遗漏,有没有什么好办法?""有有有,把头伸过来~" 解决办法 第一步:提供一个[Att ...
- Auto.js 入门教程(二)
来了来了 ~ 下面开始学习auto.js 了! 准备材料 : android7.0及以上版本的手机一部(需要开启 '无障碍服务') auto.js软件 vscode (安装配套插件Auto.js-VS ...