题目

多组询问长度为\(n\)的排列中恰好有\(m\)个数对号入座的排列数


分析

首先\(n\)个数中选择\(m\)个数放入那\(m\)个位置显然是\(C(n,m)\)

剩下就是错排\(D(n)=(n-1)(D(n-1)+D(n-2))\),也很好理解

预处理阶乘逆元错排,\(O(1)\)求解


代码

#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int mod=1000000007;
const int N=1000000;
int d[N+1],fac[N+1],inv[N+1];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
signed main(){
fac[0]=fac[1]=inv[0]=inv[1]=1,d[0]=1,d[1]=0;
for (rr int i=2;i<=N;++i) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod,d[i]=1ll*(i-1)*(d[i-2]+d[i-1])%mod;
for (rr int i=2;i<=N;++i) fac[i]=1ll*fac[i-1]*i%mod,inv[i]=1ll*inv[i-1]*inv[i]%mod;
for (rr int T=iut(),Cnm;T;--T){
rr int n=iut(),m=iut();
Cnm=1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;
print(1ll*Cnm*d[n-m]%mod),putchar(10);
}
return 0;
}

#错排,组合计数#洛谷 4071 [SDOI2016]排列计数的更多相关文章

  1. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  2. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  3. 洛谷 P4071 [SDOI2016]排列计数

    洛谷 这是一道组合数学题. 对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\). 且要保证剩下的序列不稳定,即错排\(D_{n-m}\). 所以答案就是:\[ANS=C^{m}_ ...

  4. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  5. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  6. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

  7. ●洛谷P2606 [ZJOI2010]排列计数

    题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...

  8. 洛谷P2606 [ZJOI2010]排列计数

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  9. 洛谷P2606 [ZJOI2010]排列计数(数位dp)

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  10. 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

随机推荐

  1. 基于java的个人博客

    基于java的个人博客 效果预览 首页 详情 文章管理 文章发布 分类管理 访问地址 前台地址http://localhost:8080 后台地址:http://localhost/admin/ 开发 ...

  2. CoaXPress 2.0 FPGA 4 Channel Host and Device FMC Card User Manual

    Hello-FPGA CoaXPress 2.0 FMC Card User Manual 4 1 CoaXPress 简介 4 2 CoaXPress 4R FMC 5 2.1 硬件特性 5 2.2 ...

  3. 【Azure 事件中心】Spring Cloud Stream Event Hubs Binder 发送Event Hub消息遇见 Spec. Rule 1.3 - onSubscribe, onNext, onError and onComplete signaled to a Subscriber MUST be signaled serially 异常

    问题描述 开发Java Spring Cloud应用,需要发送消息到Azure Event Hub中.使用 Spring Cloud Stream Event Hubs Binder 依赖,应用执行一 ...

  4. 【Azure 应用服务】记一次Azure Spring Cloud 的部署错误 (az spring-cloud app deploy -g dev -s testdemo -n demo -p ./hellospring-0.0.1-SNAPSHOT.jar --->>> Failed to wait for deployment instances to be ready)

    问题描述 使用Azure Spring Cloud服务,在部署时候失败,收到错误消息为: c:\project\hellospring>az spring-cloud app deploy -g ...

  5. 用 nebula_dart_gdbc 在移动设备玩图数据库,泰酷辣!

    nebula_dart_gdbc,是访问 NebulaGraph 的 Dart 语言客户端,在 dart_gdbc 的规范下进行开发. dart_gdbc 是一套使用 Dart 语言定义的图数据库标准 ...

  6. C++ STL 容器-array类型

    C++ STL 容器-array类型 array是C++11STL封装的数组,内存分配在栈中stack,绝对不会重新分配,随机访问 创建和初始化 // 下面的等同于int a[10]; std::ar ...

  7. Jmeter 如何连接mysql数据库?

    1 首先安装jmeter jdbc 插件 JDBC驱动包下载教程:https://blog.csdn.net/qq_50896685/article/details/129154801 2 安装好后将 ...

  8. Java 练习题(类+调用方法)

    1 /* 2 * 3 * 定义一个 PassObject,在类中定义一个方法printAress(),该方法的定义如下: 4 * public void printAreas(Circle c,int ...

  9. 海词 dict.cn 有 词义饼状分布图 和 词性饼状分布图 - 词典推荐

    海词 dict.cn 有 词义饼状分布图 和 词性饼状分布图 http://dict.cn/like

  10. 音标 重音 u 用 中文 吁 去记忆 骑马让马停下来的 吁 - 英语

    音标 重音 u 用 中文 吁 去记忆 骑马让马停下来的 吁