题目


分析

题目要求生成树个数,求出基尔霍夫矩阵后高斯消元,

但是这里模数不是质数,所以要辗转相除法


代码

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#include <cmath>
#define rr register
using namespace std;
const int mod=1000000000; typedef long long lll;
int a[82][82],CNT,n,m,rk[82][82];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void Mo(int &x,int y){x=x<y?x-y+mod:x-y;}
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline void add(int x,int y){++a[x][x],++a[y][y],Mo(a[x][y],1),Mo(a[y][x],1);}
inline void doit(int t1,int t2,lll &ai,lll &aj,lll &Ai,lll &Aj,int &F){
ai=Aj=1,aj=Ai=0;
while (t2){
ai-=t1/t2*Ai,aj-=t1/t2*Aj,t1%=t2,
ai=(ai%mod+mod)%mod,aj=(aj%mod+mod)%mod;
swap(t1,t2),swap(ai,Ai),swap(aj,Aj),F=mod-F;
}
}
inline signed Gauss(int n){
rr int ans=1; rr lll ai,aj,Ai,Aj;
for (rr int i=1;i<=n;++i){
for (rr int j=i+1;j<=n;++j){
rr int t1=a[i][i],t2=a[j][i];
doit(t1,t2,ai,aj,Ai,Aj,ans);
for (rr int k=1;k<=n;++k){
rr int T1=mo(a[i][k]*ai%mod,a[j][k]*aj%mod);
rr int T2=mo(a[i][k]*Ai%mod,a[j][k]*Aj%mod);
a[i][k]=T1,a[j][k]=T2;
}
}
ans=1ll*ans*a[i][i]%mod;
}
return ans;
}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=m;++j){
rr char c=getchar();
while (c!='*'&&c!='.') c=getchar();
if (c=='.') rk[i][j]=++CNT;
}
for (rr int i=1;i<=n;++i)
for (rr int j=1;j<=m;++j)
if (rk[i][j]){
if (j<m&&rk[i][j+1]) add(rk[i][j],rk[i][j+1]);
if (i<n&&rk[i+1][j]) add(rk[i][j],rk[i+1][j]);
}
return !printf("%d",Gauss(CNT-1));
}

#矩阵树定理,高斯消元#洛谷 4111 [HEOI2015]小 Z 的房间的更多相关文章

  1. [spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

    In some countries building highways takes a lot of time... Maybe that's because there are many possi ...

  2. BZOJ4031 [HEOI2015]小Z的房间 【矩阵树定理 + 高斯消元】

    题目链接 BZOJ4031 题解 第一眼:这不裸的矩阵树定理么 第二眼:这个模\(10^9\)是什么鬼嘛QAQ 想尝试递归求行列式,发现这是\(O(n!)\)的.. 想上高斯消元,却又处理不了逆元这个 ...

  3. P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元

    传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include ...

  4. [洛谷P4111][HEOI2015]小Z的房间

    题目大意:有一个$n\times m$的房间,一些位置是房间,另一些位置是柱子,相邻两个房间之间有墙,问有多少种方案可以打通一些墙把所有房间连成一棵树,柱子不可以打通 题解:矩阵树定理,把房间当点,墙 ...

  5. CF917D-Stranger Trees【矩阵树定理,高斯消元】

    正题 题目链接:https://www.luogu.com.cn/problem/CF917D 题目大意 给出\(n\)个点的一棵树,对于每个\(k\)求有多少个\(n\)个点的树满足与给出的树恰好有 ...

  6. 洛谷4208 JSOI2008最小生成树计数(矩阵树定理+高斯消元)

    qwq 这个题目真的是很好的一个题啊 qwq 其实一开始想这个题,肯定是无从下手. 首先,我们会发现,对于无向图的一个最小生成树来说,只有当存在一些边与内部的某些边权值相同的时候且能等效替代的时候,才 ...

  7. Wannafly Camp 2020 Day 1D 生成树 - 矩阵树定理,高斯消元

    给出两幅 \(n(\leq 400)\) 个点的无向图 \(G_1 ,G_2\),对于 \(G_1\) 的每一颗生成树,它的权值定义为有多少条边在 \(G_2\) 中出现.求 \(G_1\) 所有生成 ...

  8. 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元

    题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...

  9. SP104 Highways (矩阵树,高斯消元)

    矩阵树定理裸题 //#include <iostream> #include <cstdio> #include <cstring> #include <al ...

  10. 【bzoj4031】[HEOI2015]小Z的房间 && 【bzoj4894】天赋 (矩阵树定理)

    来两道矩阵树模板: T1:[bzoj4031][HEOI2015]小Z的房间 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形 ...

随机推荐

  1. Go中响应式编程库github.com/ReactiveX/RxGo详细介绍

    最近的项目用到了 RxGo ,因为之前从没有接触过,特意去学了学,特此记录下.文章很多内容是复制了参考资料或者官方文档.如果涉及侵权,请联系删除,谢谢. 1.RxGo简介 1.1 基础介绍 RxGo是 ...

  2. 在Windows环境中配置使用我们搭建的DNS服务器

    1.修改网卡的设置,首选DNS用我们自己的 2.在命令行中测试 专业的nslookup 3.已知的问题 每次在DNS服务器的web界面中,修改了解析,必须用docker restart dns命令,把 ...

  3. 在Directory.Build.props中用全局变量来管理包的版本号

    1.顶级目录下放置Directory.Build.props文件 为每个软件产品,分配一块独立的windows盘符,在根目录下放置名为Directory.Build.props的文件即可.这个文件名是 ...

  4. 【Azure 应用服务】Python fastapi Function在Azure中遇见AttributeError异常(AttributeError: 'AsgiMiddleware' object has no attribute 'handle_async')

    问题描述 参考文档"Using FastAPI Framework with Azure Functions", 使用FastAPI 模块在Function中实现API请求.通过V ...

  5. HW学习笔记

    栈库分离方法注意事项: 所有用户输入数据需要进行分离过滤,不能遗漏.选择安全的过滤函数 如 mysql_real_escape_string(),避免过滤不严格导致注入 SQL查询模板需要设计安全,米 ...

  6. .Net下的CORS跨域设置

    CORS跨域访问问题往往出现在"浏览器客户端"通过ajax调用"服务端API"的时候.而且若是深究原理,还会发现跨域问题其实还分为[简单跨域]与[复杂跨域]这两 ...

  7. PaddleOCR 服务化部署(基于PaddleHub Serving)

    最近用到百度飞桨的 PaddleOCR,研究了一下PaddleOCR的服务化部署,简单记录一些部署过程和碰到的问题. 基础环境 paddlepaddle 2.5.2 python 3.7 paddle ...

  8. Github无法读取远程仓库

    主页 个人微信公众号:密码应用技术实战 个人博客园首页:https://www.cnblogs.com/informatics/ Git无法访问 今早起来访问Github炸了,Git不能用了,提示: ...

  9. react中css里面 class中的 图片的相对地址 完美解决 backgroundImage

    发现问题:缓存 之前react的图片,也在style里面,也无所谓. 刚做了一个输入框,change的时候改变图片,每次都刷新图片,关键是没缓存,这哪受得了 之前用的: 网上搜索各种插件,替换什么的, ...

  10. Dashboard、Rancher与KubeSphere对比

    在容器技术和微服务架构日益盛行的今天,对于容器编排和管理平台的选择显得尤为重要.Kubernetes(K8s)作为容器编排的事实标准,其生态系统中涌现出了许多管理和监控工具.其中,Dashboard. ...