HiAI Foundation开发平台,加速端侧AI应用的智能革命
如果您是一名开发者,正在寻找一种高效、灵活且易于使用的端侧AI开发框架,那么HarmonyOS SDKHiAI Foundation服务(HiAI Foundation Kit)就是您的理想选择。
作为一款AI开发框架,HiAI Foundation不仅提供强大的NPU计算能力和丰富的开发工具,还提供完善的技术支持和社区资源,帮助您快速构建高质量的AI应用程序。以图像分类这种常见的AI应用为例,使用HiAI Foundation可以帮助开发者们快速实现高效的图像分类应用。HiAI Foundation面向自定义AI算法的开发者们,可以灵活地支持自有的算法,给应用带来更好的性能功耗收益。
功能演示

如果开发者对实现方式感兴趣,可以下载Demo体验,基于具体的应用场景优化。Demo支持加载离线模型,对图片中的物体进行分类。
图像分类开发步骤
1.创建项目
本章以Caffe SqueezeNet模型集成为例,说明App集成操作过程。
2.配置项目NAPI
编译HAP时,NAPI层的so需要编译依赖NDK中的libneural_network_core.so和libhiai_foundation.so。
3.头文件引用
按需引用头文件。
#include "neural_network_runtime/neural_network_core.h"
#include "hiai_foundation/hiai_options.h"
4.编写CMakeLists.txt
CMakeLists.txt中的关键代码如下:
include_directories(${HMOS_SDK_NATIVE}/sysroot/usr/lib)
FIND_LIBRARY(hiai_foundation-lib hiai_foundation)
add_library(entry SHARED Classification.cpp HIAIModelManager.cpp)
target_link_libraries(entry PUBLIC libace_napi.z.so
libhilog_ndk.z.so
librawfile.z.so
${hiai_foundation-lib}
libneural_network_core.so
)
5.集成模型
模型的加载、编译和推理主要是在native层实现,应用层主要作为数据传递和展示作用。
模型推理之前需要对输入数据进行预处理以匹配模型的输入,同样对于模型的输出也需要做处理获取自己期望的结果。另外SDK中提供了设置模型编译和运行时的配置接口,开发者可根据实际需求选择使用接口。
本节阐述同步模式下单模型的使用,从流程上分别阐述每个步骤在应用层和Native层的实现和调用,接口请参见API参考。
6.预置模型
为了让App运行时能够读取到模型文件和处理推理结果,需要先把离线模型和模型对应的结果标签文件预置到工程的"entry/src/main/resources/rawfile"目录中。
本示例所使用的离线模型转换和生成可参考Caffe模型转换,当前支持Caffe 1.0版本。
命令行中的参数说明请参见OMG参数,转换命令:
./omg --model xxx.prototxt --weight yyy.caffemodel --framework 0 --
output ./modelname
转换示例:
./omg --model deploy.prototxt --weight squeezenet_v1.1.caffemodel --framework
0 --output ./squeezenet
当看到OMG generate offline model success时,则说明转换成功,会在当前目录下生成squeezenet.om。
7.加载离线模型
在App应用创建时加载模型和读取结果标签文件。
1)调用NAPI层的"LoadModel"函数,读取模型的buffer。
2)把模型buffer传递给HIAIModelManager类的"HIAIModelManager::LoadModelFromBuffer"接口,该接口调用
OH_NNCompilation_ConstructWithOfflineModelBuffer创建模型的编译实例。
3)获取并设置模型的deviceID。
size_t deviceID = 0;
const size_t *allDevicesID = nullptr;
uint32_t deviceCount = 0;
OH_NN_ReturnCode ret = OH_NNDevice_GetAllDevicesID(&allDevicesID, &deviceCount);
if (ret != OH_NN_SUCCESS || allDevicesID == nullptr) {
OH_LOG_ERROR(LOG_APP, "OH_NNDevice_GetAllDevicesID failed");
return OH_NN_FAILED;
}
for (uint32_t i = 0; i < deviceCount; i++) {
const char *name = nullptr;
ret = OH_NNDevice_GetName(allDevicesID[i], &name);
if (ret != OH_NN_SUCCESS || name == nullptr) {
OH_LOG_ERROR(LOG_APP, "OH_NNDevice_GetName failed");
return OH_NN_FAILED;
}
if (std::string(name) == "HIAI_F") {
deviceID = allDevicesID[i];
break;
}
}
// modelData和modelSize为模型的内存地址和大小
OH_NNCompilation *compilation = OH_NNCompilation_ConstructWithOfflineModelBuffer(modelData, modelSize);
ret = OH_NNCompilation_SetDevice(compilation, deviceID);
if (ret != OH_NN_SUCCESS) {
OH_LOG_ERROR(LOG_APP, "OH_NNCompilation_SetDevice failed");
return OH_NN_FAILED;
}
4)调用OH_NNCompilation_Build,执行模型编译。
5)调用OH_NNExecutor_Construct,创建模型执行器。
6)调用OH_NNCompilation_Destroy,释放模型编译实例。
上述流程可参见Demo中"entry/src/main/cpp/Classification.cpp"文件中的"LoadModel"函数和"entry/src/main/cpp/HiAiModelManager.cpp"中的"HIAIModelManager::LoadModelFromBuffer"函数。
8.准备输入输出
1)准备输入输出
2)处理模型的输入,例如示例中模型的输入为13227*227格式Float类型的数据,需要把输入的图片转成该格式后传递到NAPI层。
3)创建模型的输入和输出Tensor,并把应用层传递的数据填充到输入的Tensor中。
// 创建输入数据
size_t inputCount = 0;
std::vector<NN_Tensor*> inputTensors;
OH_NN_ReturnCode ret = OH_NNExecutor_GetInputCount(executor, &inputCount);
if (ret != OH_NN_SUCCESS || inputCount != inputData.size()) { // inputData为开发者构造的输入数据
OH_LOG_ERROR(LOG_APP, "OH_NNExecutor_GetInputCount failed, size mismatch");
return OH_NN_FAILED;
}
for (size_t i = 0; i < inputCount; ++i) {
NN_TensorDesc *tensorDesc = OH_NNExecutor_CreateInputTensorDesc(executor, i);
NN_Tensor *tensor = OH_NNTensor_Create(deviceID, tensorDesc); // deviceID的获取方式可参考"加载离线模型"的步骤3
if (tensor != nullptr) {
inputTensors.push_back(tensor);
}
OH_NNTensorDesc_Destroy(&tensorDesc);
}
if (inputTensors.size() != inputCount) {
OH_LOG_ERROR(LOG_APP, "input size mismatch");
DestroyTensors(inputTensors); // DestroyTensors为释放tensor内存操作函数
return OH_NN_FAILED;
}
// 初始化输入数据
for (size_t i = 0; i < inputTensors.size(); ++i) {
void *data = OH_NNTensor_GetDataBuffer(inputTensors[i]);
size_t dataSize = 0;
OH_NNTensor_GetSize(inputTensors[i], &dataSize);
if (data == nullptr || dataSize != inputData[i].size()) { // inputData为模型的输入数据
OH_LOG_ERROR(LOG_APP, "invalid data or dataSize");
return OH_NN_FAILED;
}
memcpy(data, inputData[i].data(), inputData[i].size()); // inputData为模型的输入数据
}
// 创建输出数据,与输入数据的创建方式类似
size_t outputCount = 0;
std::vector<NN_Tensor*> outputTensors;
ret = OH_NNExecutor_GetOutputCount(executor, &outputCount);
if (ret != OH_NN_SUCCESS) {
OH_LOG_ERROR(LOG_APP, "OH_NNExecutor_GetOutputCount failed");
DestroyTensors(inputTensors); // DestroyTensors为释放tensor内存操作函数
return OH_NN_FAILED;
}
for (size_t i = 0; i < outputCount; i++) {
NN_TensorDesc *tensorDesc = OH_NNExecutor_CreateOutputTensorDesc(executor, i);
NN_Tensor *tensor = OH_NNTensor_Create(deviceID, tensorDesc); // deviceID的获取方式可参考"加载离线模型"的步骤3
if (tensor != nullptr) {
outputTensors.push_back(tensor);
}
OH_NNTensorDesc_Destroy(&tensorDesc);
}
if (outputTensors.size() != outputCount) {
DestroyTensors(inputTensors); // DestroyTensors为释放tensor内存操作函数
DestroyTensors(outputTensors); // DestroyTensors为释放tensor内存操作函数
OH_LOG_ERROR(LOG_APP, "output size mismatch");
return OH_NN_FAILED;
}
上述流程可参见Demo中"entry/src/main/cpp/Classification.cpp"文件中的"InitIOTensors"函数和"entry/src/main/cpp/HiAiModelManager.cpp"中的"HIAIModelManager::InitIOTensors"函数。
9.同步推理离线模型
调用OH_NNExecutor_RunSync,完成模型的同步推理。
可参见Demo中"entry/src/main/cpp/Classification.cpp"文件中的"RunModel"函数和"entry/src/main/cpp/HiAiModelManager.cpp"中的"HIAIModelManager::RunModel"函数。
说明:如果不更换模型,则首次编译加载完成后可多次推理,即一次编译加载,多次推理。
10.模型输出后处理
1)调用OH_NNTensor_GetDataBuffer,获取输出的Tensor,在输出Tensor中会得到模型的输出数据。
2)对输出数据进行相应的处理可得到期望的结果。
3)例如本示例demo中模型的输出是1000个label的概率,期望得到这1000个结果中概率最大的三个标签。
4)销毁实例。
调用OH_NNExecutor_Destroy,销毁创建的模型执行器实例。
调用OH_NNTensor_Destroy,销毁创建的输入输出Tensor。
上述流程可参见Demo中"entry/src/main/cpp/Classification.cpp"文件中的"GetResult"、"UnloadModel"函数和"entry/src/main/cpp/HiAiModelManager.cpp"中的"HIAIModelManager::GetResult"、"HIAIModelManager::UnloadModel"函数。
了解更多详情>>
HiAI Foundation开发平台,加速端侧AI应用的智能革命的更多相关文章
- 百度AI开发平台简介
AIstudio https://aistudio.baidu.com/aistudio/index 关于AI Studio AI Studio是基于百度深度学习平台飞桨的一站式AI开发平台,提供在线 ...
- AoE 搭档 TensorFlow Lite ,让终端侧 AI 开发变得更加简单。
AoE( AI on Edge , https://github.com/didi/AoE ) 是滴滴近期开源的终端侧 AI 集成运行时环境 ( IRE ). 随着人工智能技术快速发展,近几年涌现出了 ...
- java通过百度AI开发平台提取身份证图片中的文字信息
废话不多说,直接上代码... IdCardDemo.java package com.wulss.baidubce; import java.io.BufferedReader; import jav ...
- React.js 入门与实战之开发适配PC端及移动端新闻头条平台课程上线了
原文发表于我的技术博客 我在慕课网的「React.js 入门与实战之开发适配PC端及移动端新闻头条平台」课程已经上线了,文章中是目前整个课程的大纲,以后此课程还会保持持续更新,此大纲文档也会保持更新, ...
- JeecgBoot 2.1.1 代码生成器AI版本发布,基于SpringBoot+AntDesign的JAVA快速开发平台
此版本重点升级了 Online 代码生成器,支持更多的控件生成,所见即所得,极大的提高开发效率:同时做了数据库兼容专项工作,让 Online 开发兼容更多数据库:Mysql.SqlServer.Ora ...
- 商业创新不能等?用友低代码开发平台YonBuilder为您加速!
随着云计算.人工智能.物联网.大数据.5G等新一代技术的快速发展,越来越多的企业希望借助技术的力量加速数智化转型,期许通过更加敏捷和强大的应用系统推动企业的商业创新速度.但传统软件开发周期长.开发成本 ...
- 优秀开源平台,前后端分离快速开发平台,一站式多端开发(PC+APP)
JNPF平台架构介绍 JNPF快速开发平台采用前后端分离技术.采用B/S架构开发,形成一站式开发多端(APP+PC)使用. PC端版本介绍 第一个当然是当下热门的.net core了,运行环境为Vis ...
- ORihard KCU116E: 经济实惠的 100Gbps 网络和存储 FPGA 开发平台
ORihard KCU116E: 经济实惠的 100Gbps 网络和存储 FPGA 开发平台 ORihard KCU116E: 经济实惠的 100Gbps 网络和存储 FPGA 开发平台 Kint ...
- 阿里开源!轻量级深度学习端侧推理引擎 MNN
阿里妹导读:近日,阿里正式开源轻量级深度学习端侧推理引擎“MNN”. AI科学家贾扬清如此评价道:“与 Tensorflow.Caffe2 等同时覆盖训练和推理的通用框架相比,MNN 更注重在推理时的 ...
- Paddle Lite端侧部署
Paddle Lite端侧部署 端侧推理引擎的由来 随着深度学习的快速发展.特别是小型网络模型的不断成熟,原本应用到云端的深度学习推理,就可以放到终端上来做,比如手机.手表.摄像头.传感器.音响,也就 ...
随机推荐
- CSRF(Pikachu靶场练习)
CSRF(get) 自己随便输点东西,回显登录失败,查看源码没发现什么 点开提示,登录进去看看 看到可以修改个人信息,我们把居住改成China,修改成功,没发现urlhttp://127.0.0.1/ ...
- MAPREDUCE实践篇
1.编程规范 (1)用户编写的程序分成三个部分:Mapper,Reducer,Driver(提交运行mr程序的客户端) (2)Mapper的输入数据是KV对的形式(KV的类型可自定义) (3)Mapp ...
- 在uGUI正交相机中实现旋转透视效果
正常uGUI使用正交相机的话,旋转是没有透视效果的,但如果能实现较简单的透视, 对一些效果表现来说还是不错的:见下图(左为透视效果): 正常思路感觉各种麻烦. 因为uGUI使用unity的x和y方向表 ...
- PageOffice6最简集成代码(Asp.Net)
本文描述了PageOffice产品在普通的Asp.Net项目中如何集成调用. 新建Asp.Net项目:PageOffice6-Net-Simple 在您的web项目的"依赖项-包-管理NuG ...
- 『手撕Vue-CLI』编码规范检查
前言 这篇为什么是编码规范检查呢?因为这是一个很重要的环节,一个好的编码规范可以让代码更加清晰易读,在官方的 VUE-CLI 也是有着很好的编码规范的,所以我也要加入这个环节. 其实不管在哪个项目中, ...
- AIRIOT答疑第1期 | 零开发基础也能干物联网平台项目?
当然可以! 物联网低代码平台以零门槛.部署快.灵活性高.满足二次开发等特点,成为近两年来IOT服务的生力军.项目团队即使没有研发人员,也可以像拼乐高一样快速搭建物联网平台,功能全面,满足多数业务场景下 ...
- 使用interface化解一场因操作系统不同导致的编译问题
场景描述 起因: 因项目需求,需要编写一个agent, 需支持Linux和Windows操作系统. Agent里面有一个功能需要获取到服务器上所有已经被占用的端口. 实现方式:针对不同的操作系统,实现 ...
- 面试题--mysql的数据库优化
mysql的数据库优化 当有人问你如何对数据库进行优化时,很多人第一反应想到的就是 SQL 优化,如何创建索引,如何改写 SQL,他们把数据库优化与 SQL 优化划上了等号. 当然这不能算是完全错误的 ...
- ShardingJDBC使用不当引发的线上事故
本文讲述一个由 ShardingJDBC 使用不当引起的悲惨故事. 一. 问题重现 有一天运营反馈我们部分订单状态和第三方订单状态无法同步. 根据现象找到了不能同步订单状态是因为 order 表的 t ...
- Python的进程和线程——一些基础概念
1. 线程和进程 1.1 线程和进程 进程可以包含多个并行运行的线程: 通常,操作系统创建和管理线程比进程更省CPU资源: 线程用于一些小任务,进程用于繁重的任务: 同一个进程下的线程共享地址空间和其 ...