题解 - Japanese Student Championship 2021
前言:这场的题解由于蓝桥杯比赛拖延几天才发
关于本篇题解,目前还是有部分题没有解答出来正在加油补题ing
补题链接:Here
A - Competition
题意:给定 \(X,Y,Z\) 代表的意义为,超市一以 Y 元卖 X 克食料包
现在超市二的一包食料包重 \(Z\) 克,请问超市二的售价为多少才能比超市一便宜
思路:
理解一下题意就容易发现:\(\lfloor\frac{YZ - 1}{X}\rfloor\)
B - Xor of Sequences
给定两个严格上升的整数序列 A,B,现求仅出现在A和B的数字,最后结果升序打印
思路:
由于两个序列数据范围不大,直接暴力循环即可
然后赛后看了一下高rank的代码发现了一个函数:set_symmetric_difference
**set_symmetric_difference **可构造区间S1,S2的对称差集(出现于S1但不出现于S2的元素以及出现于S2但不出现于S1的元素);返回值为指向输出区间的尾端。
void solve() {
int n, m;
cin >> n >> m;
vector<int> A(n), B(m);
for (int &x : A) cin >> x;
for (int &x : B) cin >> x;
vector<int> C;
set_symmetric_difference(A.begin(), A.end(), B.begin(), B.end(), back_inserter(C));
for (int x : C) cout << x << " ";
}
C - Max GCD 2
题意:给定一个区间,问 \(A \le x < y \le B\) 求问最大的 \(gcd(x,y)\)
说实话,比赛的时候还真没想到这个方法。
思路:
由于数对 \((x,y)\) 的个数最多 \(2\times 10^{10}\) ,所以我们不可能计算每一对 \((x,y)\) ,相反的、并考虑是非问题“是否存在一对 \((x,y)\) 使得 \(gcd (x,y) = c\)?”
因为 \(c\) 是最大公约数,所以 \(x,y\) 都应该是 \(c\) 的倍数,相反如果在 \([A,B]\) 区间中 \(c\) 的倍数多于两个值,则可以选择 \(x,y\) 使得 \(gcd(x,y) = c\) 成立
由于 \(B \le 2\times10^5\) 所以运行速度会足够快
把上面的话转化为数学表达式:A ~ B 之间 C 的倍数 = (C 的倍数在 \(1\) ~ \(B\) 之间) - (C 的倍数在 \(1\) ~ \(A\) 之间)= \(\lfloor\frac{B}{c}\rfloor - \lfloor\frac{A - 1}{c}\rfloor\)
再转化一下就是检查 \(\lfloor\frac{A}{c}\rfloor < \lfloor\frac{B}{c}\rfloor\)
Show Code
void solve() {
int A, B;
cin >> A >> B;
for (int c = B;; c--)
if ((A + c - 1) / c < B / c) {
cout << c << endl;
return;
}
}
D - Nowhere P
给定质数 \(P\) ,求有多少序列 \((A_1,A_2,\dots,A_N)\) 满足:
\]
显然,当 \(n = 1\) 时答案为 \(P - 1\) ,对应合法序列为 \((1),(2),\dots,(p - 1)\)
之后在这些合法序列后插入新数时,每个序列都有且仅有一个数使得这个数插入后该序列非法(该数即为 \((-\sum_ia_i)\ mod\ p\)
故答案为:\((p -1)(p-2)^{N-1}\)
跑 qpow 的时候记得取模
Show Code
const int mod = 1e9 + 7;
ll qpow(ll a, ll b) {
ll ans = 1;
a %= mod;
for (; b; b >>= 1, a = a * a % mod)
if (b & 1) ans = ans * a % mod;
return ans;
}
void solve() {
ll N, P;
cin >> N >> P;
cout << (P - 1) * qpow(P - 2, N - 1) % mod;
}
E - Level K Palindrome
本题所有的字符串均指只由小写英文字母构成的字符串
对字符串 \(s\),
- 定义其反转为: \(\operatorname{rev}(s)\), 则 \(s\) 是回文串 \(\Longleftrightarrow\) \(s = rev(s)\)
- \(+\) 运算定义为字符串的拼接
- 定义字符串上的变换为:将其中某一字符替换为一小写英文字母
定义 \(k\) 阶回文串如下:
- 空串,非回文串为 \(0\) 阶回文串
- 对 \(i\) 阶非空回文串 \(s\) 定义 \(s + rev(s)\) 为 \(i + 1\) 阶回文串
- 对 \(i\) 阶非空回文串 \(s\) 和单个字符 \(c_i\) \(s + c + rev(s)\) 为 \(i + 1\) 阶回文串
给一字符串 \(s\) 问至少经几次变换可使其恰好为 \(k\) 阶回文串
解题思路
显然,若有解则 \(k\) 不可能过大
待补
F - Max Matrix
有一个长为 \(n\) 的全零序列 \(a\) 和长为 \(m\) 的全零序列 \(b\) ,对其做如下操作
- 将 \(a\) 中的某个数赋一个值
- 将 \(b\) 中的某个数赋一个值
这两种操作一共进行 \(Q\)次,要求每次操作后都要输出
\]
待补
G - Spanning Tree
有n个点,考虑以这n个点为顶点,满足如下条件的所有图:
- 无向图
- 给出一个矩阵 \(A\)
- 若 \(A_{i,j}=0\),则点 \(i\) 和点 \(j\) 间没有边
- 若 \(A_{i,j}=0\),则点 \(i\) 和点 \(j\) 间没有边
- 若 \(A_{i,j}=-1\),则为上述两种情况的任-种
求这些图中树的个数
思路
首先,考虑所以已经存在的边构成的图,如果有环了,则答案一定为0,否则森林中的每个树都可缩成一个点,之后用矩阵树定理即可
H - Shipping
给一个带权无向图,求满足如下条件的子图的最小边权和
\]
题解 - Japanese Student Championship 2021的更多相关文章
- @atcoder - Japanese Student Championship 2019 Qualification - F@ Candy Retribution
目录 @description@ @solution@ @accepted code@ @details@ @description@ 请找到满足以下条件的长度为 N 的非负整数序列 A1, A2, ...
- @atcoder - Japanese Student Championship 2019 Qualification - E@ Card Collector
目录 @description@ @solution@ @accepted code@ @details@ @description@ N 个卡片放在 H*W 的方格图上,第 i 张卡片的权值为 Ai ...
- PAT甲级题解-1047. Student List for Course (25)-排序
一开始是建立了course[2501][40001]数组,存储每节课的学生编号然后for循环两层输出,但这样复杂度为O(2500*40000),也很明显导致最后时间超时后来发现最多40000学生,每个 ...
- yhm的丘赛题解(其中的一些简单题)
有选择地做了丘赛里的一些简单题,不定期更新 目录 [简单组合数学]2011丘赛个人[应数计算数学概统]第3题题解 [拉格朗日多项式插值]2011丘赛个人[应数计算数学概统]第2题题解 [概率] ...
- MySql基本查询、连接查询、子查询、正则表达查询解说
林炳文Evankaka原创作品.转载请注明出处http://blog.csdn.net/evankaka 查询数据指从数据库中获取所须要的数据.查询数据是数据库操作中最经常使用,也是最重要的操作.用户 ...
- 35. Romantic Love and Ideal Romantic Relationship 爱情及理想爱情关系
35. Romantic Love and Ideal Romantic Relationship 爱情及理想爱情关系 ① Romantic love has clear evolutionary r ...
- mysql数据库查询
查询数据指从数据库中获取所需要的数据.查询数据是数据库操作中最常用,也是最重要的操作.用户可以根据自己对数据的需求,使用不同的查询方式.通过不同的查询方式,可以获得不同的数据.MySQL中是使用SEL ...
- Mysql学习总结(8)——MySql基本查询、连接查询、子查询、正则表达查询讲解
查询数据指从数据库中获取所需要的数据.查询数据是数据库操作中最常用,也是最重要的操作.用户可以根据自己对数据的需求,使用不同的查询方式.通过不同的查询方式,可以获得不同的数据.MySQL中是使用SEL ...
- OI卷题记录
2021.8.2 LG3386 匈牙利算法 二分图 LG1377 笛卡尔树 题解 2021.8.3 LG2962 \(\text{Meet in middle}\) LG3389 高斯消元 高斯-约旦 ...
- Solution Set - 神奇 NOIP 模拟赛
\[\mathfrak{\text{Defining }\LaTeX\text{ macros...}}\newcommand{\vct}[1]{\boldsymbol{#1}}\newcommand ...
随机推荐
- MySQL锁粒度是什么意思?MySQL锁粒度是什么?
MySQL锁粒度就是我们通常所说的锁级别.数据库引擎具有多粒度锁定,允许一个事务锁定不同类型的资源. MySQL数据库有三种锁的级别,分别是:页级锁.表级锁 .行级锁. 锁粒度 锁粒度就是我们通常所说 ...
- 通过滴滴技术博客:探寻造成此次P0故障的真正原因
2023年11月27日晚至2023年11月28日早晨,滴滴发生了长达12小时的P0级故障,导致滴滴核心业务都受到了影响,比如不显示定位无法打车.滴滴单车无法扫码等问题,期间滴滴进行了多次致歉 目前问题 ...
- 黑客玩具入门——9、Burp Suite
Burp Suite是一款集成化的渗透测试工具,包含了很多功能,可以帮助我们快速完成对web应用程序的渗透测试和攻击.Burp Suite是由Java语言编写,因为Java是可以跨平台的,所以Burp ...
- python循环语句(二)
Python for循环可以遍历任何序列的项目,如一个列表或者一个字符串. 知识点:for循环的语法格式如下: for iterating_var in sequence: statements(s) ...
- MyBatisPlus简介
MyBatisPlus特性 国内的一个网站 网站地址简介 | MyBatis-Plus (baomidou.com)
- C++学习笔记九:值,常量,常表达式和常初始化
1. 值: Literal: Data that is directly represented in code without going through some other variable s ...
- Head First Java学习:第九章-构造器和垃圾收集器
对象的前世今生 对象如何创建.存在何处以及如何让保存和抛弃更有效率. 会述及堆.栈.范围.构造器.超级构造器.空引用等. 1.内存的两个区域:堆和栈 堆(heap):对象的生存空间,又称为可垃圾回收的 ...
- MySQL InnoDB加锁规则分析
1. 基础知识回顾 1.索引的有序性,索引本身就是有序的 2.InnoDB中间隙锁的唯一目的是防止其他事务插入间隙.间隙锁可以共存.一个事务取得的间隙锁并不会阻止另一个事务取得同一间隙上的间隙锁.共 ...
- 【笔记整理】忽略https证书校验
import requests url = "https://sam.huat.edu.cn:8443/selfservice/" # 默认不忽略ssl证书,如果有证书问题的网站会 ...
- Rust 学习笔记
rust 学习梳理 数据类型 基于已明确的类型,Rust会推断剩下大部分类型.基于类型推断Rust具备了与动态类型语言近似的易读性,并仍能在编译期捕获类型错误. 函数可以是泛型的:单个函数ujiu可以 ...