Description

Link.

区间查 \(x\) 的倍数并除掉,区间查和。

Solution

平衡树。

首先有个基本的想法就是按 \(a_{i}\) 开平衡树,即对于每个 \(a_{i}\) 都开一棵平衡树,共5e5棵,第 \(i\) 棵平衡树维护的值是所有 \(a_{i}\) 的倍数在原数组中的下标,用处后面讲。

注意到一个小性质,一个正整数 \(A\) 最多被整除 \(\log_{2}A\) 次,这个很好想,每次都至少减少一半。可以当成一个 trick 记下来。

整个区间的数最多被除 \(\sum_{i=1}^{n}\log_{2}a_{i}\) 次,区间和的操作可以用树状数组操作实现,则整体的操作复杂度为 \(\Theta(\sum_{i=1}^{n}\log_{2}a_{i}+\log_{2}a_{i})\)。

开头提到了对于每个 \(a_{i}\) 我们都开一棵平衡树,作用就体现在这里。因为如果要保证正确的时间复杂度,我们需要快速的找到需要执行操作的数。

这里我采用的是 FHQ-Treap。

我们可以用两次 split 操作在 \(x\) 的平衡树中提取出当前的询问区间,由于我们是以下标为平衡树维护的权值,所以我们用按值分裂即可提取出区间。

然后我们就在提取出的子树中 DFS 遍历,然后暴力操作,把操作后依然是 \(x\) 的倍数的数记录下来,操作完后用这个数组再建一棵临时树然后和之前 split 出来的子树一起合并回去。

操作之前记得预处理每个数的所有约数,这个简单,直接用 vector 即可。

#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <ctime>
#include <queue> using namespace std;
typedef long long t_t; const int Maxn = 1e5 + 5;
const int Maxa = 5e5 + 5;
int n, m, xxx, zip, tot, isa[Maxn], bin[Maxa], root[Maxa];
struct Treap
{
int l, r, key, val;
} t[Maxa * 230];
struct Fenwick_Tree
{
t_t bit[Maxn]; void ins(int x, t_t v)
{
for (; x <= n; x += x & -x) bit[x] += v;
} t_t sum(int x)
{
t_t ret = 0;
for (; x; x -= x & -x) ret += bit[x];
return ret;
}
} fwt;
vector < int > vec[Maxa]; int newnode(int val)
{
t[++tot].val = val;
t[tot].key = rand();
return tot;
} void split(int now, int val, int &x, int &y)
{
if (now == 0) x = y = 0;
else
{
if (t[now].val <= val)
{
x = now;
split(t[now].r, val, t[now].r, y);
}
else
{
y = now;
split(t[now].l, val, x, t[now].l);
}
}
} int merge(int x, int y)
{
if (x == 0 || y == 0) return x | y;
if (t[x].key > t[y].key)
{
t[x].r = merge(t[x].r, y);
return x;
}
else
{
t[y].l = merge(x, t[y].l);
return y;
}
} int build(int l, int r)
{
if (l > r) return 0;
int mid = (l + r) >> 1;
int now = newnode(bin[mid]);
t[now].l = build(l, mid - 1);
t[now].r = build(mid + 1, r);
return now;
} void dfs(int now, int val)
{
if (now == 0) return ;
dfs(t[now].l, val);
if (isa[t[now].val] % val == 0)
{
fwt.ins(t[now].val, -isa[t[now].val]);
isa[t[now].val] /= val;
fwt.ins(t[now].val, isa[t[now].val]);
}
if (isa[t[now].val] % val == 0) bin[++zip] = t[now].val;
dfs(t[now].r, val);
} int tx, ty, tp;
void change(int l, int r, int x)
{
if (x == 1) return ;
split(root[x], r, tx, tp);
split(tx, l - 1, tx, ty);
zip = 0;
dfs(ty, x);
root[x] = merge(tx, merge(build(1, zip), tp));
} signed main()
{
srand((114514 - 1) / 3 - 4);
scanf("%d %d", &n, &m);
for (int i = 1; i <= n; ++i)
{
scanf("%d", &isa[i]);
fwt.ins(i, isa[i]);
xxx = max(xxx, isa[i]);
}
for (int i = 1; i <= n; ++i)
{
for (int j = 1; j * j <= isa[i]; ++j)
{
if (isa[i] % j == 0)
{
vec[j].push_back(i);
if (j * j != isa[i]) vec[isa[i] / j].push_back(i);
}
}
}
for (int i = 1; i <= xxx; ++i)
{
zip = 0;
for (unsigned j = 0; j < vec[i].size(); ++j) bin[++zip] = vec[i][j];
root[i] = build(1, zip);
}
for (int i = 0; i < m; ++i)
{
int t, l, r, x;
scanf("%d %d %d", &t, &l, &r);
if (t == 1)
{
scanf("%d", &x);
change(l, r, x);
}
else printf("%lld\n", fwt.sum(r) - fwt.sum(l - 1));
}
return 0;
}

Solution -「洛谷 P5610」「YunoOI 2013」大学的更多相关文章

  1. 「区间DP」「洛谷P1043」数字游戏

    「洛谷P1043」数字游戏 日后再写 代码 /*#!/bin/sh dir=$GEDIT_CURRENT_DOCUMENT_DIR name=$GEDIT_CURRENT_DOCUMENT_NAME ...

  2. 「 洛谷 」P2768 珍珠项链

    珍珠项链 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 题目来源 「 洛谷 」P2768 珍珠项链 ...

  3. 「 洛谷 」P4539 [SCOI2006]zh_tree

    小兔的话 推荐 小兔的CSDN [SCOI2006]zh_tree 题目限制 内存限制:250.00MB 时间限制:1.00s 标准输入输出 题目知识点 思维 动态规划 \(dp\) 区间\(dp\) ...

  4. 「 洛谷 」P2151 [SDOI2009]HH去散步

    小兔的话 欢迎大家在评论区留言哦~ HH去散步 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入 标准输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 ...

  5. Solution -「JSOI 2019」「洛谷 P5334」节日庆典

    \(\mathscr{Description}\)   Link.   给定字符串 \(S\),求 \(S\) 的每个前缀的最小表示法起始下标(若有多个,取最小的).   \(|S|\le3\time ...

  6. Solution -「洛谷 P4372」Out of Sorts P

    \(\mathcal{Description}\)   OurOJ & 洛谷 P4372(几乎一致)   设计一个排序算法,设现在对 \(\{a_n\}\) 中 \([l,r]\) 内的元素排 ...

  7. Solution -「POI 2010」「洛谷 P3511」MOS-Bridges

    \(\mathcal{Description}\)   Link.(洛谷上这翻译真的一言难尽呐.   给定一个 \(n\) 个点 \(m\) 条边的无向图,一条边 \((u,v,a,b)\) 表示从 ...

  8. Solution -「APIO 2016」「洛谷 P3643」划艇

    \(\mathcal{Description}\)   Link & 双倍经验.   给定 \(n\) 个区间 \([a_i,b_i)\)(注意原题是闭区间,这里只为方便后文描述),求 \(\ ...

  9. 「P4994」「洛谷11月月赛」 终于结束的起点(枚举

    题目背景 终于结束的起点终于写下句点终于我们告别终于我们又回到原点…… 一个个 OIer 的竞赛生涯总是从一场 NOIp 开始,大多也在一场 NOIp 中结束,好似一次次轮回在不断上演.如果这次 NO ...

  10. 「洛谷4197」「BZOJ3545」peak【线段树合并】

    题目链接 [洛谷] [BZOJ]没有权限号嘤嘤嘤.题号:3545 题解 窝不会克鲁斯卡尔重构树怎么办??? 可以离线乱搞. 我们将所有的操作全都存下来. 为了解决小于等于\(x\)的操作,那么我们按照 ...

随机推荐

  1. 为 Windows 系统替换优雅的苹果字体

    使用 Windows 的童鞋,大家估计都用惯了默认的微软雅黑字体,字体本身也很不错,但使用久了也该换个别的字体了,换个字体换个心情嘛. 今天给大家推荐一款非常棒的一键更换 Windows 系统字体的软 ...

  2. ChatGPT玩法(二):AI玩转Excel表格处理

    前言 在线免费体验ChatGpt:https://www.topgpt.one 你是否还在为记不住Excel的繁琐函数和公式而苦恼?如果是这样,那么不妨试试ChatExcel.即使你对函数一窍不通,也 ...

  3. P3498 [POI2010]KOR-Beads 题解

    前言: 最近在做哈希的题,发现了这道好题,看题解里很多大佬的方法都很巧妙,自己就发一个较为朴素的方法吧. 题意: 题目传送门 给你一个序列,需要求出数 k,使划分的子串长度为 k 时,不同的子串数量最 ...

  4. Python初学者友好丨详解参数传递类型

    摘要: 本文清晰地解释了Python中的不同参数传递类型,并提供了示例代码来说明每种类型的用法.对于初学者或不清楚Python传参的读者们来说是非常有益的,文中提供了足够的信息来理解和使用Python ...

  5. 密码学概念科普(加密算法、数字签名、散列函数、HMAC)

    密码散列函数 密码散列函数 (Cryptographic hash function),是一个单向函数,输入消息,输出摘要.主要特点是: 只能根据消息计算摘要,很难根据摘要反推消息 改变消息,摘要一定 ...

  6. 从零开始整SpringBoot-搭建一个企业级项目

    创建Springboot项目 在企业里的项目多数是分Modules的,更多是通过物理方式隔离层之间的职责. 首先按照原有新建SpringBoot项目创建,填好相关信息后,选择Java 8其他不用选. ...

  7. 重新搞懂Git,掌握日常命令和基本操作

    1.git Git 是一个免费的开源分布式版本控制系统,旨在快速高效地处理从小型到超大型项目的所有内容. Git 易于学习,占用空间很小,性能快如闪电.它超越了Subversion,CVS,Perfo ...

  8. 行行AI人才直播第5期:系列课-AI理解及ChatGPT从基础到高级应用

    当前,人工智能是全世界研究的重点对象,也是人们茶余饭后讨论的经典话题.自从 OpenAI 发布 ChatGPT-4 之后,似乎无论是在工作.娱乐.甚至是日常生活中,我们都能感受到AI带来的便利和改变. ...

  9. JAVA获取字符串内的括号对;获取括号对的内容;按指定规则返回括号对位置;

    先看结果:处理字符串 "这个是一条测试用的字符串[ ( 5 ( 4( 3 [(1) (2)] ))(7))][(6)]" 结果 解决思路:参考正则表达式里面出入站部分 代码实现如下 ...

  10. C++面试八股文:如何避免死锁?

    某日二师兄参加XXX科技公司的C++工程师开发岗位第31面: 面试官:什么是锁?有什么作用? 二师兄:在C++中,锁(Lock)是一种同步工具,用于保护共享资源,防止多个线程同时访问,从而避免数据竞争 ...