Atcoder ABC299 E-G
Atcoder ABC299 E-G
E - Nearest Black Vertex
链接:
E - Nearest Black Vertex (atcoder.jp)
简要题意:
问题陈述
给你一个简单连接的无向图,有 \(N\) 个顶点和 \(M\) 条边(简单图不包含自循环和多条边)。
在 \(i = 1, 2, \ldots, M\) 中, \(i\) -th 边双向连接顶点 \(u_ i\) 和顶点 \(v_ i\) 。请判断是否有办法将每个顶点涂成黑色或白色以同时满足以下两个条件,如果存在,请给出一个这样的办法。
- 至少有一个顶点被涂成黑色。
- 对于每个 \(i = 1, 2, \ldots, K\) 都成立:
- 顶点 \(p_ i\) 与涂成黑色的顶点之间的最小距离正好是 \(d_i\) 。
这里,顶点 \(u\) 和顶点 \(v\) 之间的距离是连接 \(u\) 和 \(v\) 的路径中边的最小数量。
思路:
- 先找到每个到\(p_ i\)距离为\(d_i\)的点,我们称之为可行点
- 那非可行点是什么呢,就是到\(p_ i\)短于\(d_i\)的点,这些点需要排除在外
- 然后对于每个\(p_i\)用可行点中挑出不可行点,即是答案
代码:
const int N = 200005;
int n,m;
vector<int> e[N];
int nin[N]; //排除在外的数字,白色数字
vector<int> can[N]; //可能的数字;
map<int,int> hd;// 每个数字对于黑色的最短距离
void solve(){
cin >> n >> m;
for(int i = 1; i <= m;i++){
int u,v;
cin >> u >> v;
e[u].push_back(v);
e[v].push_back(u);
}
int q;
cin >> q;
for(int i = 1;i<=q;i++){
int u,d;
cin >> u >> d;
hd[u] = d;
}
if(q==0){
cout << "Yes" << endl;
for(int i = 1;i<=n;i++){
cout << 1;
}
return;
}
int vis[n + 1];
for(int i = 1;i<=n;i++){
if(!hd.count(i)){
continue;
}
memset(vis,0,sizeof vis);
int d = hd[i];
if(d==0){
can[i].push_back(i);
continue;
}
queue<pair<int,int>> q;
q.push({i,0});
while(q.size()){
auto p = q.front();q.pop();
int u = p.first,val = p.second;
if(vis[u]) continue;
if(val<d){
nin[u]=1;
}
if(val==d){
can[i].push_back(u);
continue;
}
if(val>d) continue;
vis[u] = 1;
for(auto v:e[u]){
q.push({v,val+1});
}
}
}
int res[n + 1];
memset(res,0,sizeof res);
for(int i = 1;i<=n;i++){
if(!hd.count(i)) continue;
int cnt = 0;
for(auto p:can[i]){
if(!nin[p]){
cnt++;
res[p] = 1;
}
}
if(!cnt){
cout << "No" << endl;
return;
}
}
cout << "Yes" << endl;
for(int i = 1;i<=n;i++){
cout << res[i];
}
}
G - Minimum Permutation
链接:
G - Minimum Permutation (atcoder.jp)
简要题意:
问题陈述
长度为 \(N\) 的序列 \(A\) 由 \(1\) 和 \(M\) 之间的整数组成。其中,从 \(1\) 到 \(M\) 的每个整数都至少在 \(A\) 中出现过一次。
在 \(A\) 的长度为 \(M\) 的子序列中,每个 \(1, \ldots, M\) 都出现过一次,请找出字典序最小的一个。
思路:
- 很明显我们对于一个1至M的数有保留和删除两种操作
- 什么时候不能删除?,在后面数组中没有这个数字了就不能删除
- 这样我们可以建一个表记录每个数字最后出现的位置
- 然后用单调栈保持数组的最小即可
- 注意还要开一个表记录数字是否在栈中
代码:
const int N = 200005;
int last[N],a[N],instk[N];
void solve(){
int n,k;
cin >> n >> k;
for(int i = 1;i<=n;i++){
int t;
cin >>t;
a[i] = t;
last[t] = i;
}
stack<int> st;
for(int i = 1;i<=n;i++){
if(instk[a[i]]) continue;
while(!st.empty() && a[i] < st.top() && last[st.top()] > i){
instk[st.top()]=0;
st.pop();
}
st.push(a[i]);
instk[a[i]]=1;
}
vector<int> res;
while(st.size()){
res.push_back(st.top());st.pop();
}
for(int i = res.size() - 1;i>=0;i--){
cout << res[i] << " ";
}
}
Atcoder ABC299 E-G的更多相关文章
- Storyboards Tutorial 03
这一节主要介绍segues,static table view cells 和 Add Player screen 以及 a game picker screen. Introducing Segue ...
- 文件图标SVG
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink ...
- AtCoder - 4496 G - k-DMC
AtCoder - 4496 G - k-DMC 题目 长度为n的字符串,q次查询,问"DMC"(不要求连续)在字符串中出现的次数,其中D和M的距离不超过k. 错误思路 通过遍历字 ...
- AtCoder Beginner Contest 260 G // imos(累积和算法)
题目传送门:G - Scalene Triangle Area (atcoder.jp) 题意: 给定大小为N*N的OX矩阵,若矩阵的(s,t)处为O,其覆盖范围为:满足以下条件的所有位置(i,j) ...
- AtCoder Beginner Contest 220部分题(G,H)题解
刚开始的时候被E题卡住了,不过发现是个数学题后就开始使劲推式子,幸运的是推出来了,之后的F题更是树形DP换根的模板吧,就草草的过了,看了一眼G,随便口胡了一下,赶紧打代码,毕竟时间不多了,最后也没打完 ...
- [题解] Atcoder Beginner Contest ABC 270 G Ex 题解
点我看题 G - Sequence in mod P 稍微观察一下就会发现,进行x次操作后的结果是\(A^xS+(1+\cdots +A^{x-1})B\).如果没有右边那一坨关于B的东西,那我们要求 ...
- AtCoder Beginner Contest 282 G - Similar Permutation
套路题 题意 求有多少个 \(1\) 到 \(n\) 的排列满足恰有 \(k\) 对在排列中相邻的数满足前小于后 \(2 \leq n \leq 500, 0 \leq k \leq (n - 1)\ ...
- AtCoder Beginner Contest 272 - G - Yet Another mod M
随机 + 数论 题意 Submission #35524126 - AtCoder Beginner Contest 272 给一个长度为 \(n\;(1<=n<=5000)\) 的数组 ...
- Atcoder CODE FESTIVAL 2016 Final G - Zigzag MST[最小生成树]
题意:$n$个点,$q$次建边,每次建边选定$x,y$,权值$c$,然后接着$(y,x+1,c+1),(x+1,y+1,c+2),(y+1,x+2,c+3),(x+2,y+2,c+4)\dots$(画 ...
- AtCoder Grand Contest 030题解
第一次套刷AtCoder 体验良好 传送门 Poisonous Cookies cout<<b+min(c,a+b+); Tree Burning 难度跨度有点大啊 可以证明当第一次转向之 ...
随机推荐
- Ethercat设备数据 转 EthernetIP项目案例
1 案例说明 1. 设置网关采集EtherCAT设备数据 2. 把采集的数据转成EthernetIP协议转发给其他系统. 2 VFBOX网关工作原理 VFBOX网 ...
- setsocket、getsocket 函数详解
背景 以前用到socket的时候会调用setsocket进行设置,现在整理有关的笔记的时候,重新查阅资料发现有点奇怪,发现大家比较少使用到这个. setsocket/getsocket #includ ...
- 设备树DTS 学习:学习总结(应用篇)
设备树DTS 学习:学习总结(应用篇) 背景 经过前几章的学习,我们可以说是掌握了设备树的基础用法,现在作为总结回顾. 1.设备树DTS 学习:有关概念 介绍了什么是设备树,设备树的作用,如何编译设备 ...
- CF1591F 题解
先不管值域,设计状态 \(dp_{i,j}\) 表示考虑前 \(i\) 个数最后一个数为 \(j\) 的方案数,那么有如下转移: \[dp_{i,j} = dp_{i-1,k} (j \not = k ...
- Swagger注解说明
常用注解: - @Api()用于类: 表示标识这个类是swagger的资源 - @ApiOperation()用于方法: 表示一个http请求的操作 - @ApiParam()用于方法,参数,字段说明 ...
- 【实操记录】MySQL二进制安装包部署
截至2023年11月2日,MySQL社区版最新版本是8.0.35,本文详细描述了采用二进制安装的各个步骤,具有较强的参考意义,基本可作为标准步骤实施. ■ 下载数据库介质 社区版的下载地址为oracl ...
- ProgressBar 进度控件
在 VB.NET 中,你可以使用 ProgressBar 控件或者自定义的进度提示方法来实现这个功能.以下是一个示例代码,展示如何使用 ProgressBar 控件来显示导入情况: ' 创建一个 Pr ...
- wails实现腾讯元器bot
简单记录工具的一个模块 后端 Api调用 登录 腾讯元器 后创建智能体,按自己的需求来创建,发布后要等等审核. 等发布完成后点击调用api即可,这里可以看到user_id, assistant ...
- 分析C语言程序
1 #include <stdio.h> 2 int main() 3 { 4 puts("C语言"); 5 return 0; 6 } 函数的概念 C语言提供了很多功 ...
- MFC的消息反射
这边我用对话框来测试mfc的消息反射 当对话框初始化完成之后,点击按钮,首先相应CDialog::OnCommand其中wpARAM(低八位nId,高八位子控件句柄) 和LPARAM(句柄) OnCo ...