Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ]

论文信息

论文标题:WIND: Weighting Instances Differentially for Model-Agnostic Domain Adaptation
论文作者:
论文来源:2021 ACL
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  出发点:传统的实例加权方法由于不能学习权重,从而不能使模型在目标领域能够很好地泛化;

  方法:为了解决这个问题,在元学习的启发下,将领域自适应问题表述为一个双层优化问题,并提出了一种新的可微模型无关的实例加权算法。提出的方法可以自动学习实例的权重,而不是使用手动设计的权重度量。为了降低计算复杂度,在训练过程中采用了二阶逼近技术;

  贡献:

    • 提出了一种新的可微实例加权算法,该算法学习梯度下降实例的权重,不需要手动设计加权度量;
    • 采用了一种二阶近似技术来加速模型的训练;
    • 对三个典型的NLP任务进行了实验:情绪分类、机器翻译和关系提取。实验结果证明了该方法的有效性;

2 相关

  事实:把域外、域内数据联合训练做领域适应,但并不是所有来自域外数据集的样本在训练过程中都具有相同的效果。一些关于神经机器翻译(NMT)任务的研究表明,与域内数据相关的域外实例是有益的,而与域内数据无关的实例甚至可能对翻译质量有害 。

  目前的实列加权方法:

    • 核心思想:根据实例的重要性以及与目标域的相似性来加权实例;
    • 问题:当前领域适应场景中,域外语料库的规模大于域内语料库,容易导致学习到的权值偏向于域外数据,导致域内数据的性能较差;

3 方法

  为避免域内数据的性能较差,如何有效地利用 $\mathcal{D}_{\text {in }}$ 是域转移的关键。为解决这个问题,首先从 $\mathcal{D}_{\text {in }}$ 中抽取子集 $\mathcal{D}_{i t}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n_{1}}$,并为每个实例 $\left(x_{i}, y_{i}\right) \in \mathcal{D}_{i t} \cup \mathcal{D}_{\text {out }}$ 分配一个标量权值 $w_{i}$。本文希望在训练过程中,模型能够找到最优的权重 $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n_{1}+m}\right)$,因此,权重 $w$ 是可微的,并可通过梯度下降优化。此外,将 DNN 表示为由 $\theta$ 参数化的函数 $f_{\theta}: \mathcal{X} \rightarrow \mathcal{Y}$,并将 $x_{i}$ 从输入空间映射到标签空间。

  最终训练损失遵循一个加权和公式:

    $\mathcal{L}_{\text {train }}(\boldsymbol{\theta}, \boldsymbol{w})=\frac{1}{n_{1}+m} \sum_{\substack{\left(x_{i}, y_{i}\right) \;\in \; \mathcal{D}_{i t}\; \cup\; \mathcal{D}_{\text {out }}}} \; w_{i} \ell\left(f_{\boldsymbol{\theta}}\left(x_{i}\right), y_{i}\right)$

  其中 $\ell$ 表示损失函数,可以是任何类型的损失,如分类任务的交叉熵损失,或标签平滑交叉熵损失。

  由于域内和域外数据集的数据分布存在差异,简单联合优化 $\boldsymbol{\theta}$ 和 $\boldsymbol{w}$ 可能会对 $\boldsymbol{w}$ 引入偏差。本文期望在 $\boldsymbol{w}$ 上训练的模型可以推广到域内数据。受 MAML 的启发,本文建议从 $\mathcal{D}_{i n}$ 中采样另一个子集 $\mathcal{D}_{q}=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n_{2}}$ 命名为查询集,使用这个查询集来优化 $\boldsymbol{w}$。具体来说,目标是得到一个权重向量 $w$ 减少 $\mathcal{D}_{q}$ 上的损失:

    $\mathcal{L}_{q}(\boldsymbol{\theta})=\frac{1}{n_{2}} \sum_{\left(x_{i}, y_{i}\right) \in \mathcal{D}_{q}} \ell\left(f_{\boldsymbol{\theta}}\left(x_{i}\right), y_{i}\right)$

  总结:随机初始化 $\boldsymbol{w}$,用 $\mathcal{L}_{\text {train }}(\boldsymbol{\theta}, \boldsymbol{w})$ 训练一个模型,得到优化后的参数 $\boldsymbol{\theta}^{*}$,接着固定 $\boldsymbol{\theta}^{*}$ ,最小化在查询集上的损失,得到新的 $\boldsymbol{w}$。

  该过程表述为以下双层优化问题:

    $\begin{array}{ll}\underset{\boldsymbol{w}}{\text{min}}& \mathcal{L}_{q}\left(\boldsymbol{\theta}^{*}\right) \\\text { s.t. } & \boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\arg \min }\; \mathcal{L}_{\text {train }}(\boldsymbol{\theta}, \boldsymbol{w})\end{array}$

  上述双层优化问题由于求解复杂性高,难以直接解决。受 MAML 中的优化技术启发,将每次迭代的训练过程分为以下三个步骤:

  • 伪更新

    $\widehat{\boldsymbol{\theta}}=\boldsymbol{\theta}-\beta \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text {train }}(\boldsymbol{\theta}, \boldsymbol{w})$

  • 实例权重更新

    $\begin{aligned}\boldsymbol{w}^{*} & =\underset{\boldsymbol{w}}{\arg \min } \mathcal{L}_{q}(\widehat{\boldsymbol{\theta}}) \\& =\underset{\boldsymbol{w}}{\arg \min } \mathcal{L}_{q}\left(\boldsymbol{\theta}-\beta \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text {train }}(\boldsymbol{\theta}, \boldsymbol{w})\right)\end{aligned}$

    $\widehat{\boldsymbol{w}}=\boldsymbol{w}-\gamma \cdot \nabla_{\boldsymbol{w}} \mathcal{L}_{q}(\widehat{\boldsymbol{\theta}})$

  • 最终更新

    $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta}-\beta \cdot \nabla_{\boldsymbol{\theta}} \mathcal{L}_{\text {train }}(\boldsymbol{\theta}, \widehat{\boldsymbol{w}})$

  对 $\nabla_{\boldsymbol{w}} \mathcal{L}_{q}(\widehat{\boldsymbol{\theta}})$ 使用链式法则:

    $\begin{aligned}\widehat{\boldsymbol{w}} & =\boldsymbol{w}-\gamma \cdot \nabla_{\boldsymbol{w}} \mathcal{L}_{q}(\widehat{\boldsymbol{\theta}}) \\& =\boldsymbol{w}-\gamma \cdot \nabla_{\widehat{\boldsymbol{\theta}}} \mathcal{L}_{q} \cdot \nabla_{\boldsymbol{w}} \widehat{\boldsymbol{\theta}} \\& =\boldsymbol{w}+\beta \gamma \cdot \nabla_{\widehat{\boldsymbol{\theta}}} \mathcal{L}_{q} \cdot \nabla_{\boldsymbol{\theta}, \boldsymbol{w}}^{2} \mathcal{L}_{\text {train }}\end{aligned}$

  问题:使用 $|\boldsymbol{\theta}|$,$|\boldsymbol{w}|$ 分别表示 $\boldsymbol{\theta}$,$\boldsymbol{w}$ 的维数,二阶推导 $\nabla_{\boldsymbol{\theta}, \boldsymbol{w}}^{2} \mathcal{L}_{\text {train }}$ 是一个 $|\boldsymbol{\theta}| \times|\boldsymbol{w}|$ 矩阵,无法计算和存储。幸运的是,可采用 DARTS 中使用的近似技术来解决这个问题,这种技术使用了有限差分近似:

    $\begin{array}{c}\nabla_{\widehat{\boldsymbol{\theta}}} \mathcal{L}_{q} \cdot \nabla_{\boldsymbol{\theta}, \boldsymbol{w}}^{2} \mathcal{L}_{\text {train }} \approx \frac{\nabla_{\boldsymbol{w}} \mathcal{L}_{\text {train }}\left(\boldsymbol{\theta}^{+}, \boldsymbol{w}\right)-\nabla_{\boldsymbol{w}} \mathcal{L}_{\text {train }}\left(\boldsymbol{\theta}^{-}, \boldsymbol{w}\right)}{2 \epsilon} \\\boldsymbol{\theta}^{+}=\boldsymbol{\theta}+\epsilon \nabla_{\widehat{\boldsymbol{\theta}}} \mathcal{L}_{q} \\\boldsymbol{\theta}^{-}=\boldsymbol{\theta}-\epsilon \nabla_{\widehat{\boldsymbol{\theta}}} \mathcal{L}_{q} \\\end{array}$

  其中 $\epsilon$ 是一个小标量,设置 $\epsilon=0.01 /\left\|\nabla_{\widehat{\boldsymbol{\theta}}} \mathcal{L}_{q}\right\|_{2}$

算法

  

4 实验结果

情感分析

  

论文解读(WIND)《WIND: Weighting Instances Differentially for Model-Agnostic Domain Adaptation》的更多相关文章

  1. 论文解读(PCL)《Probabilistic Contrastive Learning for Domain Adaptation》

    论文信息 论文标题:Probabilistic Contrastive Learning for Domain Adaptation论文作者:Junjie Li, Yixin Zhang, Zilei ...

  2. 论文解读丨【CVPR 2022】不使用人工标注提升文字识别器性能

    摘要:本文提出了一种针对文字识别的半监督方法.区别于常见的半监督方法,本文的针对文字识别这类序列识别问题做出了特定的设计. 本文分享自华为云社区<[CVPR 2022] 不使用人工标注提升文字识 ...

  3. 点云配准的端到端深度神经网络:ICCV2019论文解读

    点云配准的端到端深度神经网络:ICCV2019论文解读 DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration ...

  4. CVPR2020论文解读:3D Object Detection三维目标检测

    CVPR2020论文解读:3D Object Detection三维目标检测 PV-RCNN:Point-Voxel Feature Se tAbstraction for 3D Object Det ...

  5. itemKNN发展史----推荐系统的三篇重要的论文解读

    itemKNN发展史----推荐系统的三篇重要的论文解读 本文用到的符号标识 1.Item-based CF 基本过程: 计算相似度矩阵 Cosine相似度 皮尔逊相似系数 参数聚合进行推荐 根据用户 ...

  6. CVPR2019 | Mask Scoring R-CNN 论文解读

    Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...

  7. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  8. Gaussian field consensus论文解读及MATLAB实现

    Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction ...

  9. zz扔掉anchor!真正的CenterNet——Objects as Points论文解读

    首发于深度学习那些事 已关注写文章   扔掉anchor!真正的CenterNet——Objects as Points论文解读 OLDPAN 不明觉厉的人工智障程序员 ​关注他 JustDoIT 等 ...

  10. NIPS2018最佳论文解读:Neural Ordinary Differential Equations

    NIPS2018最佳论文解读:Neural Ordinary Differential Equations 雷锋网2019-01-10 23:32     雷锋网 AI 科技评论按,不久前,NeurI ...

随机推荐

  1. values() 字典形式显示查询结果

    values() 字典形式显示查询结果 name,age为数据库的两个列 Student.objects.values('name','age')

  2. java设计模式【抽象工厂模式】

    java设计模式[抽象工厂模式] 抽象工厂模式 抽象工厂模式是对简单工厂模式的一个变种,它允许通过一个统一的接口来创建不同的产品实例,而无需指定具体的子类.在这个模式中,我们只关心产品的抽象接口,而将 ...

  3. 【Java】水果超市管理系统

    前言 说是个系统,看着像实训的产物,但实际上这是Java课程最后一个关于jdbc的大实验,yes,挺大的. 过程 看着视频里的一堆一堆的文件,逻辑混乱的讲解,我决定 我自己写这个系统 说干就干: 分析 ...

  4. There is not enough memory to perform the requested operation

    今日在写bug 时 ide 突发脑溢血,崩溃了 一.修改用户目录下的 .vmoptions 找到C:\用户\用户名.WebStorm2018.1\config\webstorm64.exe.vmopt ...

  5. Doris(一) -- 简介和安装

    Doris 简介 Doris 概述 Apache Doris 由百度大数据部研发 (之前叫百度 Palo,2018 年贡献到 Apache 社区后,更名为 Doris), 在百度内部,有超过 200 ...

  6. 柏林噪声&幻想大陆地图生成

    序言 之前介绍过perlin噪声的实现,现在应用实践一下--程序化生成幻想大陆 这里使用的是perlin噪声倍频技术(也称分形噪声),详情传送门:柏林噪声算法 代码示例使用的是shadertoy的语法 ...

  7. shell编程-提取IP地址

    1.使用cut文本处理工具提取 [root@hadoop129 scripts]# ifconfig ens33 | grep netmask | cut -d " " -f 10 ...

  8. React后台管理系统08 左侧菜单栏点击事件以及设置只有一个菜单展开项

    我们在Menu组件身上添加一个点击事件:对应的函数写一个回调函数:获取当前对象的e的身上的key, 这里其实不难看出e就是当前点击时的menu对象,我们这里获取的是e的key,对应上面定义的属性. 此 ...

  9. Java 网络编程 —— 安全网络通信

    SSL 简介 SSL(Secure Socket Layer,安全套接字层)是一种保证网络上的两个节点进行安全通信的协议.IETF(Interet Engineering Task Force)国际组 ...

  10. Linux系统运维之subversionEdge部署

    一.介绍 Subversion Edge是Collabnet公司发布的SVN和Apache等组件结合的SVN管理工具.由于安装过subversion+apache,发现添加账户都需要登录服务器改配置, ...