本文考虑OFDM系统在多径信道下的误码性能

代码

clc;close all;clear

%% Seting parameters
EbN0_list = 20:2:40;
Q_order_list = 2:2:10;
loopNumber = 10000;
fprintf('Qm\t EbN0 \t \t EsN0 \t \t SNR_Cal \t \t ser \t\t ser_theory\t\t\t ber\t\t nloop \t\t \n');
for iQorder = 1 : length(Q_order_list)
for iEbN0 = 1 : length(EbN0_list) %% Frame structure
N_Frame = 1;
N_Symbol = 1;
N_RB = 106;
N_SC_perRB = 12;
N_SC = N_RB * N_SC_perRB;
N_Ant = 1;
N_fft_order = floor(log2(N_RB * N_SC_perRB));
N_fft = 2^(N_fft_order+1);
N_cp = N_fft/8;
EbN0 = EbN0_list(iEbN0); %% Modulation
Q_order = Q_order_list(iQorder);
Qm = 2^Q_order;
N_bit = N_Frame * N_Symbol * N_RB * N_SC_perRB * Q_order; %% Noise Calculation
SNR = EbN0 + 10 * log10(Q_order); %% Loop
for iloop = 1 :loopNumber
data_bit_in = randi([0 1], 1, N_bit);
dataSymbolsIn = bi2de(reshape(data_bit_in, Q_order, N_bit/Q_order).', 'left-msb');
dataMod = qammod(dataSymbolsIn, Qm,'UnitAveragePower', true); %% Show Constellation
%scatterplotme(dataMod) %% Resource Mapping
RE_Grid = zeros(N_RB * N_SC_perRB,N_Symbol * N_Frame);
dataMod_tmp = reshape(dataMod,N_RB * N_SC_perRB,[]); %only data
Power_Scale = 1;
RE_Grid_all = Power_Scale * dataMod_tmp; %% IFFT add CP
frame_mod_shift = ifftshift(RE_Grid_all);
ifft_data = ifft(frame_mod_shift,N_fft)*sqrt(N_fft);
%ifft_data = ifft(frame_mod_shift)*sqrt(1272);
Tx_cd = [ifft_data(N_fft-N_cp+1:end,:);ifft_data];
time_signal = reshape(Tx_cd,[],1); %% Channel
power_RE = sum(sum(abs(RE_Grid_all).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame;
power_tp = sum(sum(abs(ifft_data).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame; %IFFT zero padding averages the true RE Power
N0 = power_RE .* 10.^(-SNR / 10);
white_noise_starand = 1/sqrt(2)*(randn(size(time_signal)) + 1j * randn(size(time_signal)));
nTap = 2;
taps = RayleighChanTaps(nTap);
% taps = [0.9,0.1];
time_signal_path = Multipath_channel(time_signal,taps);
TransmittedSignal = time_signal_path + sqrt(N0) * white_noise_starand; %% Receive and Sys
ReceivedSignal = TransmittedSignal;
hF = fftshift(fft(taps,N_fft)); %% FFT and Frame
frame_recieved_parallel = reshape(ReceivedSignal, N_fft + N_cp, []);
frame_Received = frame_recieved_parallel(N_cp + 1:end,:);
frame_Grid_fft = fft(frame_Received,N_fft) / sqrt(N_fft);
RE_Grid_all_fftshift = fftshift(frame_Grid_fft);
RE_Grid_all_fftshift_eq = fftshift(diag(1./hF)*RE_Grid_all_fftshift);
RE_Grid_all_Received = fftshift(RE_Grid_all_fftshift_eq(1:N_SC,:));
% figure(1)
% plot(abs(RE_Grid_all_fftshift(:,1)))
% figure(2)
% plot(abs(RE_Grid_all_fftshift_eq(:,1)))
% figure(3)
% plot(abs(abs(hF)))
% figure(4)
% plot(abs(abs(1./hF))) %% Demodulation
RE_PreDeMod = reshape(RE_Grid_all_Received,[],1);
dataSymbolsOut = qamdemod(RE_PreDeMod, Qm,'UnitAveragePower', true);
data_bit_out = reshape((de2bi(dataSymbolsOut, 'left-msb')).',1,[]);
power_RE_receid = sum(sum(abs(RE_PreDeMod).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame;
snr_all(iQorder,iEbN0,iloop) = 10*log10(power_RE/(power_RE_receid - power_RE)); %% Result: Ser and Ber
%Ser
sym_err = length(find(dataSymbolsOut - dataSymbolsIn));
ser_all(iQorder,iEbN0,iloop) = sym_err / length(dataSymbolsOut);
%Ber
bit_error = sum(abs(data_bit_out - data_bit_in));
ber_all(iQorder,iEbN0,iloop) = bit_error / length(data_bit_out);
end
sers = mean(ser_all,3);
snrs = mean(snr_all,3);
bers = mean(ber_all,3);
sers_theory(iQorder,iEbN0) = QAM_SER_Theory(Qm,EbN0); fprintf('%dQAM\t%f\t %f\t %f\t %e\t\t%e\t\t%e\t\t%d\t\n', Qm, EbN0, SNR,snrs(iQorder,iEbN0),sers(iQorder,iEbN0),sers_theory(iQorder,iEbN0),bers(iQorder,iEbN0),loopNumber);
end
end figure(1)
semilogy(EbN0_list, bers(1,:), 'k--+');
hold on
grid on
semilogy(EbN0_list, bers(2,:), 'r--o');
semilogy(EbN0_list, bers(3,:), 'b--x');
semilogy(EbN0_list, bers(4,:), 'g--s');
xlabel('Eb/N0,dB');
ylabel('BER');
title('BER VERS SNR');
legend('QPSK','16QAM','256QAM','1024QAM'); figure(2)
semilogy(EbN0_list, sers(1,:), 'k--+');
hold on
grid on
semilogy(EbN0_list, sers(2,:), 'r--o');
semilogy(EbN0_list, sers(3,:), 'b--x');
semilogy(EbN0_list, sers(4,:), 'g--s');
xlabel('Eb/N0,dB');
ylabel('SER');
title('SER VERS SNR');
%SML = simulation, THR = theory
legend('QPSK','16QAM','256QAML','1024QAM');

用到的信道与过信道代码

function taps = RayleighChanTaps(nTap)
taps= 1/sqrt(2)*1/sqrt(nTap)*(randn(nTap,1) + 1j*randn(nTap,1));
taps = taps./sum(abs(taps));
end
function taps = ExponentialChanTaps(SampRateMHz, delaySprdNsec)
sampTimeNsec = 1000 / SampRateMHz; if delaySprdNsec == 0
Kmax = 0;
vark = 1;
else
Kmax = ceil(10 * delaySprdNsec/sampTimeNsec);
var0 = 1 - exp(- sampTimeNsec /delaySprdNsec);
k = (0:Kmax)';
vark = var0 * exp( -k *sampTimeNsec/delaySprdNsec);
end
stdDevReOrIm = sqrt(vark/2);
taps = stdDevReOrIm .*(randn(Kmax +1,1) + 1j*randn(Kmax+1,1));
end
function yt = Multipath_channel(xt,taps)
ht = taps;
xht = conv(ht,xt);
%yt = xht(end - length(xt)+1:end);
yt = xht(1:length(xt));
end

仿真结果

瑞利信道下的仿真结果,设置抽头系数为2,仿真次数设置1000次曲线才会平滑。

在瑞利信道和白噪声下的仿真结果对比

结果略

一个感兴趣的点是固定信噪比时误码性能随多径的数量是如何变化的,先保证最大时延扩展没有超过CP的长度。

结论分析

瑞利信道下的误码率曲线近似为直线,(很奇怪,难以理解)

反思

OFDM系统各种QAM调制阶数在多径信道下的误码性能仿真(暂存版本)的更多相关文章

  1. DVB-C系统中QAM调制与解调仿真

    本文简单记录一下自己学习<通信原理>的时候调试的一个仿真DVB-C(Cable,数字有线电视)系统中QAM调制和解调的程序.自己一直是研究"信源"方面的东西,所以对&q ...

  2. 对正交频分复用OFDM系统的理解

    OFDM系统 正交频分复用OFDM(Orthogonal Frenquency Division Multiplexing)是一种多载波调制技术. 基本思想:在发送端,它将高速串行数据经过串并变换形成 ...

  3. 多用户OFDM系统资源分配研究

    首先,OFDMA 是什么? OFDM 技术的基本原理是将无线信道划分为若干互相正交的子信道,把高速串行数据流转化为低速并行子数据流,低速并行子数据流在子信道上独立传输. OFDMA 是LTE的下行多址 ...

  4. 小小知识点(八)——星座图与PSK、QAM调制的关系

    星座图是对PSK和QAM调制相位和幅度的一种表示,让我们只关注被调制参量本身,而不管已调信号波形及其频率. 在信号传输仿真时也一样,我们只关注携带信息的幅值和相位,而不管信号的传输波形和频率.这就是为 ...

  5. 系统吞吐量、TPS(QPS)、用户并发量、性能測试概念和公式

    PS:以下是性能測试的主要概念和计算公式,记录下: 一.系统吞度量要素: 一个系统的吞度量(承压能力)与request对CPU的消耗.外部接口.IO等等紧密关联.单个reqeust 对CPU消耗越高, ...

  6. 痞子衡嵌入式:系统时钟配置不当会导致i.MXRT1xxx系列下OTFAD加密启动失败

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是系统时钟配置不当会导致i.MXRT1xxx系列下OTFAD加密启动失败问题. 我们知道,i.MXRT1xxx家族早期型号(RT1050/ ...

  7. Django(博客系统):基于pycharm如何一个django工程下创建多个app

    背景:通常我们创建一个django系统时,为了把业务模块划分清楚往往会把一个独立的业务模块放到一个app中,如果多个独立的业务模块就会创建多个app,一般情况下为了更好的管理这些app,会把他们都存放 ...

  8. linux系统centOS7下搭建redis集群中ruby版本过低问题的解决方法

    问题描述: 在Centos7中,通过yum安装ruby的版本是2.0.0,但是如果有些应用需要高版本的ruby环境,比如2.2,2.3,2.4... 那就有点麻烦了,譬如:我准备使用redis官方给的 ...

  9. [漏洞分析]phpyun系统重装安全隐患#影响从phpyun4.2部分,4.3到4.5全版本

    0x00 之前在t00ls上看到的,漏洞原理很简单,但是都是细节问题,很值得去学习. 感谢bypass师傅. 也发了邮件给官方,但没有任何回复,估计是漏洞作者bypass师傅报备了吧.   0x01 ...

  10. 牛客网Java刷题知识点之File对象常用功能:获取文件名称、获取文件路径、获取文件大小、获取文件修改时间、创建与删除、判断、重命名、查看系统根目录、容量获取、获取某个目录下内容、过滤器

    不多说,直接上干货! 获取文件名称.获取文件路径.获取文件大小.获取文件修改时间 FileMethodDemo.java package zhouls.bigdata.DataFeatureSelec ...

随机推荐

  1. vue render函数的简单使用(1)

    1.render函数的介绍 在vue中我们经常使用HTML模板语法来组建页面. 除此之外,使用还可以使用render函数来创建页面. 因为vue是虚拟DOM,拿到template模板时也要转译成VNo ...

  2. forEach在项目中的使用

    forEach 会改变原始数组 被forEach循环的数组不能够为空 forEach会改变原始数组 value是内容 index是索引 array是你写的数组. foeEach内部是异步的哈 功能描述 ...

  3. ABP 使用Except 和EqualityHelper<T> 实现去重

    先上一端代码!!! railwayCar中有10条记录,train参考railwayCar创建了5条记录.要实现,当train再次参考railwayCar创建记录时,使用过的记录在展示列表时不可以再次 ...

  4. 20.4 OpenSSL 套接字AES加密传输

    在读者了解了加密算法的具体使用流程后,那么我们就可以使用这些加密算法对网络中的数据包进行加密处理,加密算法此处我们先采用AES算法,在网络通信中,只需要在发送数据之前对特定字符串进行加密处理,而在接收 ...

  5. SpringCloud-03-Nacos配置管理

    Nacos配置管理 原理图: 1.统一配置管理 ① 在Nacos中添加配置信息 ② 在弹出表单中填写配置信息 ③ 配置获取的步骤*(原理) ④ 引入Nacos的配置管理客户端依赖 <!--nac ...

  6. 面向对象之trait

    面向对象之trait 场景 一个web站点,它有很多不同的类:用户(User).页面(Page).联系表单(ContactFrom)等.我们可能需要在每个类中添加一个方法的定义,但是这样的话就会造成不 ...

  7. 分享实用小工具:JAVA版本位运算工具类

    将二进制数中的每位数字1或0代表着某种开关标记,1为是,0为否,则一个数字可以代表N位的开关标记值,可有效减少过多的变量定义 或 过多的表字段,同时也能在一些复杂的组合判断场景下利用位与.位或.异或等 ...

  8. flutter3+dart3聊天室|Flutter3跨平台仿微信App语音聊天/朋友圈

    全新研发flutter3+dart3+photo_view跨多端仿微信App界面聊天Flutter3-Chat. flutter3-chat基于最新跨全平台技术flutter3+dart3+mater ...

  9. flash8.ocx或其附件之一不能正确注册

    运行书中自带光盘中的程序,在该程序的readme说明中,提到这类错误,解决方式是: 因为是免安装程序,需要运行"setup"文件夹下的setup.exe文件,安装控件.在安装完成后 ...

  10. Delphi-判断一个对象是否释放,改造官方的Assigned

    直接上例子了,基础知识自己去了解,首先定义一个类: TPerson = class public name: string; age: Integer; constructor Create(name ...