本文介绍基于PythonArcPy模块,实现基于栅格图像批量裁剪栅格图像,同时对齐各个栅格图像的空间范围统一其各自行数列数的方法。

  首先明确一下我们的需求。现有某一地区的多张栅格遥感影像,其虽然都大致对应着同样的地物范围,但不同栅格影像之间的空间范围行数列数、像元的位置等都不完全一致;例如,某一景栅格影像会比其他栅格影像多出一行,而另一景栅格影像可能又会比其他栅格影像少一列等等。我们希望可以以其中某一景栅格影像为标准,将全部的栅格影像的具体范围、行数、列数等加以统一。

  本文所用到的具体代码如下。

# -*- coding: utf-8 -*-
"""
Created on Thu Dec 29 21:13:19 2022 @author: fkxxgis
""" import arcpy tif_file_path = r"E:\02_Project\01_Chlorophyll\ClimateZone\Original"
result_file_path = r"E:\02_Project\01_Chlorophyll\ClimateZone\Original_Snap/"
snap_file_name = r"E:\02_Project\01_Chlorophyll\ClimateZone\Original\F_LC.tif" arcpy.env.workspace = tif_file_path
arcpy.env.snapRaster = snap_file_name tif_file_list = arcpy.ListRasters("*", "tif") for tif_file in tif_file_list:
key_name = tif_file.split(".tif")[0] + "S.tif"
arcpy.Clip_management(tif_file,
"#",
result_file_path + key_name,
snap_file_name,
"#",
"#",
"MAINTAIN_EXTENT")

  其中,tif_file_path是保存有我们原有栅格图像的路径,result_file_path是裁剪后各个结果图像的保存路径(记得在这一路径后加一个正斜杠/,否则之后输出结果的路径会有问题),snap_file_name是裁剪其他栅格图像时,所用的模板栅格图像——因为我们要统一各个栅格图像的行号与列号,所以很显然,这里这个模板图像就需要找各个栅格图像中,行数与列数均为最少的那一景图像。这里需要注意,如果大家的各个栅格图像中,行数与列数最少的栅格不是同一个栅格,那么可以分别用行数最少、列数最少的这两个栅格分别作为模板,执行两次上述代码。

  代码整体思路也很简单:首先,我们基于arcpy.ListRasters()函数,获取tif_file_path路径下原有的全部.tif格式的图像文件,并以列表的形式存放于tif_file_list中;随后,逐一取出tif_file_list列表中的栅格文件,进行裁剪处理。这里的裁剪我们是通过arcpy.Clip_management()函数来实现的,其各项参数的具体含义大家可以参考官方帮助文档,我们这里就只对本文中需要修改的参数加以介绍。

  其中,第一个参数就是当前循环所用的栅格图像文件,第三个参数是结果文件的保存路径与文件名,第四个参数则是模板文件;最后一个参数"MAINTAIN_EXTENT"是为了保证得到的裁剪后结果图像严格与模板图像的行数、列数相匹配。除此之外,几个"#"表示我们对其他参数暂时不配置。

  此外,在代码开头的这句arcpy.env.snapRaster = snap_file_name,表明我们将以所选用的模板文件为标准,使得输出的结果文件的像元大小、图像范围等与模板文件保持一致。这里需要注意,这一句代码与前述的"MAINTAIN_EXTENT"参数缺一不可——只有二者同时出现,才可以保证输出结果与模板文件是严格一致的。

  另一方面,由于我们用到了ArcPy模块,因此如果大家的Python版本是3.0及以上,则需要在ArcMap软件中的Python运行框,或其对应的IDLE(如下图所示)中运行上述代码。

  运行结果后,可以发现所有输出结果文件就具有完全一致的行数与列数了,且其各自的像元位置也是完全一致的。

  至此,大功告成。

Python实现snap:对齐多张遥感影像的空间范围的更多相关文章

  1. Python gdal读取MODIS遥感影像并结合质量控制QC波段掩膜数据

      本文介绍基于Python中GDAL模块,实现MODIS遥感影像数据的读取.计算,并基于质量控制QC波段进行图像掩膜的方法.   前期的文章Python GDAL读取栅格数据并基于质量评估波段QA对 ...

  2. 遥感影像和DEM数据获取处理、GeoServer切片发布并使用Cesium加载

    1. 数据获取 笔者这里使用的是哨兵一号(Sentinel-1).ALOS的遥感影像和ALOS的DEM数据 下载地址为:ASF Data Search (alaska.edu) ASF(Alaska ...

  3. Python核对遥感影像批量下载情况的方法

      本文介绍批量下载遥感影像时,利用Python实现已下载影像文件的核对,并自动生成未下载影像的下载链接列表的方法.   批量下载大量遥感影像数据对于GIS学生与从业人员可谓十分常见.然而,对于动辄成 ...

  4. Python ArcPy批量掩膜、重采样大量遥感影像

      本文介绍基于Python中ArcPy模块,对大量栅格遥感影像文件进行批量掩膜与批量重采样的操作.   首先,我们来明确一下本文的具体需求.现有一个存储有大量.tif格式遥感影像的文件夹:且其中除了 ...

  5. 批量下载Landsat遥感影像的方法

      本文介绍在USGS网站批量下载Landsat系列遥感影像的方法.   首先,打开EarthExplorer的官网,首先完成注册与登录.   接下来,点击左侧"Search Criteri ...

  6. 遥感影像滤波处理软件 — timesat3.2

    最近因为要做遥感影像的滤波处理,经过女神推荐,决定用Timesat,可是该软件3.1版本只适合xp系统以及2011的matlab,后来在官网上找到了最新的3.2版本.支持64位操作系统以及2014的m ...

  7. 在matlab中进行遥感影像地理坐标的相互转换

    在matlab中进行图像处理,一般使用的都是图像本地坐标,以左上角(1,1)开始.处理完成后,如果要将结果在带地理坐标的遥感影像中显示,或者需要输出成shp文件,就需要涉及到本地坐标和地理坐标的转换, ...

  8. 在matlab中实现遥感影像和shp文件的结合显示

    clc;close all;clear; road=shaperead('boston_roads.shp'); %读取shape文件 figure, mapshow('boston.tif'); % ...

  9. 1. GDAL与OpenCV2.X数据转换(适合多光谱和高光谱等多通道的遥感影像)

    一.前言 GDAL具有强大的图像读写功能,但是对常用图像处理算法的集成较少,OpenCV恰恰具有较强的图像处理能力,因此有效的结合两者对图像(遥感影像)的处理带来了极大的方便.那么如何实现GDAL与o ...

  10. GDAL与OpenCV2.X数据转换(适合多光谱和高光谱等多通道的遥感影像)

    一.前言 GDAL具有强大的图像读写功能,但是对常用图像处理算法的集成较少,OpenCV恰恰具有较强的图像处理能力,因此有效的结合两者对图像(遥感影像)的处理带来了极大的方便.那么如何实现GDAL与o ...

随机推荐

  1. 【小测试】玩一玩 VictoriaMetrics 的 force merge

    作者:张富春(ahfuzhang),转载时请注明作者和引用链接,谢谢! cnblogs博客 zhihu Github 公众号:一本正经的瞎扯 我是期望通过备份来建立 VictoriaMetrics 的 ...

  2. 通杀无限 debugger,目前只有 1% 的人知道!

    前言 相信很多小伙伴在进行 web 逆向的时候,都遇到过无限 debugger.最简单的方法,在 debugger 位置,点击行号,右键 Never pause here,永远不在此处断下即可.但是这 ...

  3. 【k哥爬虫普法】Python程序员爬取视频资源13万部,一分钱没挣,获刑2年!

    我国目前并未出台专门针对网络爬虫技术的法律规范,但在司法实践中,相关判决已屡见不鲜,K 哥特设了"K哥爬虫普法"专栏,本栏目通过对真实案例的分析,旨在提高广大爬虫工程师的法律意识, ...

  4. C语言输出键盘

    使用printf()函数输出样式 #include <stdio.h> int main() { printf("┌───┬───┬───┬───┬───┬───┬───┬─── ...

  5. STM32CubeMX教程27 SDIO - 读写SD卡

    1.准备材料 正点原子stm32f407探索者开发板V2.4 STM32CubeMX软件(Version 6.10.0) keil µVision5 IDE(MDK-Arm) ST-LINK/V2驱动 ...

  6. 强化学习基础篇【1】:基础知识点、马尔科夫决策过程、蒙特卡洛策略梯度定理、REINFORCE 算法

    强化学习基础篇[1]:基础知识点.马尔科夫决策过程.蒙特卡洛策略梯度定理.REINFORCE 算法 1.强化学习基础知识点 智能体(agent):智能体是强化学习算法的主体,它能够根据经验做出主观判断 ...

  7. 8.5 CheckRemoteDebuggerPresent

    CheckRemoteDebuggerPresent 也是一个微软提供的反调试函数,该函数可以在本地或者远程进程中使用.函数接收两个参数进程句柄和一个指向布尔值的指针.如果指定的进程正在被调试,则函数 ...

  8. Eslint 的rules一些配置 (.eslintrc.js文件中的rules选项)

    rules: { // off=0, warn=1, error=2, 如果是数组, 第二项表示参数option // indent: [2, 2], // 控制缩进为2 eqeqeq: 1, // ...

  9. 苹果正在测试新款Mac mini:搭载M3芯片 配备24GB大内存

    据悉苹果目前正在测试新的Mac机型,亮点是采用最新的M3芯片. 据报道,首款搭载M3芯片的设备应该是13英寸的MacBook Pro和重新设计的MacBook Air,Mac mini机型并不在名单上 ...

  10. spring声明式事务(@Transactional)开发常犯的几个错误及解决办法

    spring声明式事务(@Transactional)开发常犯的几个错误及解决办法 目前JAVA的微服务项目基本都是SSM结构(即:springCloud +springMVC+Mybatis),而其 ...