http://www.lydsy.com/JudgeOnline/problem.php?id=4517 (题目链接)

题意

  求n个数中正好m个数位置不变的排列数。

Solution

  $${错排公式:D(n)=(n-1)*[D(n-1)+D(n-2)]}$$

  $${ans=D(n-m)*C(n,n-m)}$$

代码

// bzoj4517
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define inf 2147483640
#define MOD 1000000007
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=1000010;
LL D[maxn],fac[maxn];
int n,m; LL power(LL a,LL b) {
LL res=1;
while (b) {
if (b&1) res=res*a%MOD;
b>>=1;a=a*a%MOD;
}
return res;
}
LL C(int n,int m) {
return fac[n]*power(fac[m],MOD-2)%MOD*power(fac[n-m],MOD-2)%MOD;
}
int main() {
int T;scanf("%d",&T);
D[0]=1;D[1]=0;
for (int i=2;i<=1000000;i++) D[i]=(i-1)*(D[i-2]+D[i-1])%MOD;
fac[0]=1;fac[1]=1;
for (int i=2;i<=1000000;i++) fac[i]=fac[i-1]*i%MOD;
while (T--) {
scanf("%d%d",&n,&m);
printf("%lld\n",C(n,n-m)*D[n-m]%MOD);
}
return 0;
}

  

【bzoj4517】 Sdoi2016—排列计数的更多相关文章

  1. BZOJ4517 Sdoi2016 排列计数 【DP+组合计数】*

    BZOJ4517 Sdoi2016 排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 ...

  2. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  3. bzoj4517[Sdoi2016]排列计数(组合数,错排)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1792  Solved: 1111[Submit][Stat ...

  4. [BZOJ4517] [Sdoi2016] 排列计数 (数学)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  5. 2018.10.25 bzoj4517: [Sdoi2016]排列计数(组合数学)

    传送门 组合数学简单题. Ans=(nm)∗1Ans=\binom {n} {m}*1Ans=(mn​)∗1~(n−m)(n-m)(n−m)的错排数. 前面的直接线性筛逆元求. 后面的错排数递推式本蒟 ...

  6. BZOJ4517——[Sdoi2016]排列计数

    求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条件的序列可 ...

  7. BZOJ4517: [Sdoi2016]排列计数

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

  8. bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

    这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...

  9. bzoj千题计划282:bzoj4517: [Sdoi2016]排列计数

    http://www.lydsy.com/JudgeOnline/problem.php?id=4517 组合数+错排公式 #include<cstdio> #include<ios ...

  10. BZOJ4517:[SDOI2016]排列计数(组合数学,错排公式)

    Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是 ...

随机推荐

  1. 在CentOS7上安装JDK1.8

    在CentOS7上安装JDK1.8 1 通过 SecureCRT 连接到阿里云 CentOS7 服务器: 2 进入到目录 /usr/local/ 中: cd /usr/local/ 3 创建目录 to ...

  2. jquery通过class验证表单不能为空

    在开发系统时,往往都有某些表单数据为必填项,若用jQuery通过ID去验证,不仅会影响效率,还会有所遗漏,不易于后期维护. 本章将介绍如何利用jQuery,通过为表单配置class进行统一验证.(ID ...

  3. Android layout_weight理解

    layout_weight属性只能用于LinearLayout布局,不能用于RelativeLayout等其他布局: layout_weight属性如果不设定,默认值为0: layout_weight ...

  4. SQLSERVER2008 R2安装说明

    SQLSERVER2008 R2安装说明一. 安装环境:SQLSERVER2008 R2有32位版本和64位版本,32位版本可以安装在WINDOWS XP及以上操32位和64位的操作系统上,如果服务器 ...

  5. 笔记整理之 Bulk Insert

    之前2篇日志整理了BCP大致的用法,这次整理一下它的兄弟 Bulk Insert 的写法以及和bcp那边的结合的用法. 首先,Bulk Insert 语句要在连接了Sql Server 服务器之后才执 ...

  6. W3School-CSS 尺寸 (Dimension) 实例

    CSS 尺寸 (Dimension) 实例 CSS 实例 CSS 背景实例 CSS 文本实例 CSS 字体(font)实例 CSS 边框(border)实例 CSS 外边距 (margin) 实例 C ...

  7. python paramiko 进行文件上传处理

    #!/usr/bin/env python # -*- coding:utf-8 -*- import paramiko import uuid class Ha(object): def __ini ...

  8. 开源一个windows下的定时任务框架,简单粗暴好用。

    这里是你想要的功能: 支持插件,将你要执行的任务编译成程序集放到框架的根目录下,再进行简单的配置就行了. 支持Corn表达式.想让任务在什么时候执行就在什么时候执行. 支持安装成windows ser ...

  9. 【小白的CFD之旅】05 补充基础

    黄师姐是一个很干脆果敢的人,从她的日常装扮就能显露出来.卡帕运动装,白色运动鞋,马尾辫,这是小白对黄师姐的第一印象.“明天早上九点钟来实验室,我给你安排这阵子的任务.”黄师姐对小白说.说话语气和老蓝一 ...

  10. [WPF系列]-基础系列 TabControl应用

    引言 Tabcontrol控件也是我们在项目中经常用到的一个控件,用它将相关的信息组织在一起分类显示. 简介     ========================================= ...