第3节 hive高级用法:14、hive的数据压缩
六、hive的数据压缩
在实际工作当中,hive当中处理的数据,一般都需要经过压缩,前期我们在学习hadoop的时候,已经配置过hadoop的压缩,我们这里的hive也是一样的可以使用压缩来节省我们的MR处理的网络带宽
6.1、MR支持的压缩编码
|
压缩格式 |
工具 |
算法 |
文件扩展名 |
是否可切分 |
|
DEFAULT |
无 |
DEFAULT |
.deflate |
否 |
|
Gzip |
gzip |
DEFAULT |
.gz |
否 |
|
bzip2 |
bzip2 |
bzip2 |
.bz2 |
是 |
|
LZO |
lzop |
LZO |
.lzo |
否 |
|
LZ4 |
无 |
LZ4 |
.lz4 |
否 |
|
Snappy |
无 |
Snappy |
.snappy |
否 |
为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示
|
压缩格式 |
对应的编码/解码器 |
|
DEFLATE |
org.apache.hadoop.io.compress.DefaultCodec |
|
gzip |
org.apache.hadoop.io.compress.GzipCodec |
|
bzip2 |
org.apache.hadoop.io.compress.BZip2Codec |
|
LZO |
com.hadoop.compression.lzo.LzopCodec |
|
LZ4 |
org.apache.hadoop.io.compress.Lz4Codec |
|
Snappy |
org.apache.hadoop.io.compress.SnappyCodec |
压缩性能的比较
|
压缩算法 |
原始文件大小 |
压缩文件大小 |
压缩速度 |
解压速度 |
|
gzip |
8.3GB |
1.8GB |
17.5MB/s |
58MB/s |
|
bzip2 |
8.3GB |
1.1GB |
2.4MB/s |
9.5MB/s |
|
LZO |
8.3GB |
2.9GB |
49.3MB/s |
74.6MB/s |
http://google.github.io/snappy/
On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.
6.2、压缩配置参数
要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):
|
参数 |
默认值 |
阶段 |
建议 |
|
io.compression.codecs (在core-site.xml中配置) |
org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec, org.apache.hadoop.io.compress.Lz4Codec |
输入压缩 |
Hadoop使用文件扩展名判断是否支持某种编解码器 |
|
mapreduce.map.output.compress |
false |
mapper输出 |
这个参数设为true启用压缩 |
|
mapreduce.map.output.compress.codec |
org.apache.hadoop.io.compress.DefaultCodec |
mapper输出 |
使用LZO、LZ4或snappy编解码器在此阶段压缩数据 |
|
mapreduce.output.fileoutputformat.compress |
false |
reducer输出 |
这个参数设为true启用压缩 |
|
mapreduce.output.fileoutputformat.compress.codec |
org.apache.hadoop.io.compress. DefaultCodec |
reducer输出 |
使用标准工具或者编解码器,如gzip和bzip2 |
|
mapreduce.output.fileoutputformat.compress.type |
RECORD |
reducer输出 |
SequenceFile输出使用的压缩类型:NONE和BLOCK |
6.3、开启Map输出阶段压缩
开启map输出阶段压缩可以减少job中map和Reduce task间数据传输量。具体配置如下:
案例实操:
1)开启hive中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
2)开启mapreduce中map输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
3)设置mapreduce中map输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;
4)执行查询语句
select count(1) from score;
6.4 开启Reduce输出阶段压缩
当Hive将输出写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。
案例实操:
1)开启hive最终输出数据压缩功能
hive (default)>set hive.exec.compress.output=true;
2)开启mapreduce最终输出数据压缩
hive (default)>set mapreduce.output.fileoutputformat.compress=true;
3)设置mapreduce最终数据输出压缩方式
hive (default)> set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;
4)设置mapreduce最终数据输出压缩为块压缩
hive (default)>set mapreduce.output.fileoutputformat.compress.type=BLOCK;
5)测试一下输出结果是否是压缩文件
insert overwrite local directory '/export/servers/snappy' select * from score distribute by s_id sort by s_id desc;
第3节 hive高级用法:14、hive的数据压缩的更多相关文章
- 第3节 hive高级用法:16、17、18
第3节 hive高级用法:16.hive当中常用的几种数据存储格式对比:17.存储方式与压缩格式相结合:18.总结 hive当中的数据存储格式: 行式存储:textFile sequenceFile ...
- 第3节 hive高级用法:13、hive的函数
4.2.Hive参数配置方式 Hive参数大全: https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties 开 ...
- 第3节 hive高级用法:15、hive的数据存储格式介绍
hive当中的数据存储格式: 行式存储:textFile sequenceFile 都是行式存储 列式存储:orc parquet 可以使我们的数据压缩的更小,压缩的更快 数据查询的时候尽量不要用se ...
- 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...
- Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包)
Tags: Hadoop Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包) Centos7.5安装分布式Hadoop2.6.0+Hbase ...
- Spark入门到精通--(第九节)环境搭建(Hive搭建)
上一节搭建完了Hadoop集群,这一节我们来搭建Hive集群,主要是后面的Spark SQL要用到Hive的环境. Hive下载安装 下载Hive 0.13的软件包,可以在百度网盘进行下载.链接: h ...
- Hive的用法
1.Hive是Hadoop的一个子项目 利用MapReduce编程技术,实现了部分SQL语句.而且还提供SQL的编程接口.Hive推进Hadoop在数据仓库方面的发展. Hive是一个基于Hadoop ...
- 1.13-1.14 Hive Action
一.Hive Action 1.创建文件 [root@hadoop-senior oozie-apps]# pwd /opt/cdh-5.3.6/oozie-4.0.0-cdh5.3.6/oozie- ...
- hadoop之hive高级操作
在输出结果较多,需要输出到文件中时,可以在hive CLI之外执行hive -e "sql" > output.txt操作 但当SQL语句太长或太多时,这种方式不是很方便,可 ...
随机推荐
- 【SCOI 2005】 最大子矩阵
[题目链接] 点击打开链接 [算法] 动态规划 我们发现,M只有两种取值,1和2,那么,只需分类讨论即可 当M = 1时,其实这个问题就成了就最大连续子段和的问题,只不过要选K段而已 用f[i][j] ...
- js 获取url的request参数
方法1: function getRequest(strParame) { var args = new Object(); var query = location.search.substrin ...
- bzoj 3930: [CQOI2015]选数【快速幂+容斥】
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html 注意区间长度为1e5级别. 则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gc ...
- 微信小程序中如何使用setData --- 修改数组对象、修改对象
看代码吧~ 这是修改对象 this.setData({ allStageIndex: e.detail.value, [`projectDetailsData.stage`]: this.data.a ...
- shiro之jdbcRealm
Shiro认证过程 创建SecurityManager--->主体提交认证--->SecurityManager认证--->Authenticsto认证--->Realm验证 ...
- iOS NSDictionary <--> NSString(JSON) in Objc
NSDictionary --> NSString + (NSString*)stringINJSONFormatForObject:(id)obj { NSData *jsonData = [ ...
- 557. 反转字符串中的单词 III
给定一个字符串,你需要反转字符串中每个单词的字符顺序,同时仍保留空格和单词的初始顺序. 示例 1: 输入: "Let's take LeetCode contest" 输出: &q ...
- 【react-native】持续踩坑总结
陆陆续续的已经接触了RN快3个月,整体的感受...感觉在调试兼容andorid问题的时候就像回到了IE时代. 本来想按自己踩坑的路径持续更新一些记录,但是,现实是坑太多,还是统一写一篇汇总一下吧(鉴于 ...
- linux系统资源限制ulimit
ulimit命令用来限制系统用户对shell资源的访问.如果不懂什么意思,下面一段内容可以帮助你理解: 假设有这样一种情况,当一台 Linux 主机上同时登陆了 10 个人,在系统资源无限制的情况下, ...
- Zznu 1913: yifan and matrix (多路归并)
题目链接: 1913: yifan and matrix 题目描述: 有一个n*n的矩阵,在每一行取出一个数,可以得到n个数的和,问前n小的和分别是多少? 解题思路: 对于两个数组a[n],b[n], ...