第3节 hive高级用法:14、hive的数据压缩
六、hive的数据压缩
在实际工作当中,hive当中处理的数据,一般都需要经过压缩,前期我们在学习hadoop的时候,已经配置过hadoop的压缩,我们这里的hive也是一样的可以使用压缩来节省我们的MR处理的网络带宽
6.1、MR支持的压缩编码
|
压缩格式 |
工具 |
算法 |
文件扩展名 |
是否可切分 |
|
DEFAULT |
无 |
DEFAULT |
.deflate |
否 |
|
Gzip |
gzip |
DEFAULT |
.gz |
否 |
|
bzip2 |
bzip2 |
bzip2 |
.bz2 |
是 |
|
LZO |
lzop |
LZO |
.lzo |
否 |
|
LZ4 |
无 |
LZ4 |
.lz4 |
否 |
|
Snappy |
无 |
Snappy |
.snappy |
否 |
为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器,如下表所示
|
压缩格式 |
对应的编码/解码器 |
|
DEFLATE |
org.apache.hadoop.io.compress.DefaultCodec |
|
gzip |
org.apache.hadoop.io.compress.GzipCodec |
|
bzip2 |
org.apache.hadoop.io.compress.BZip2Codec |
|
LZO |
com.hadoop.compression.lzo.LzopCodec |
|
LZ4 |
org.apache.hadoop.io.compress.Lz4Codec |
|
Snappy |
org.apache.hadoop.io.compress.SnappyCodec |
压缩性能的比较
|
压缩算法 |
原始文件大小 |
压缩文件大小 |
压缩速度 |
解压速度 |
|
gzip |
8.3GB |
1.8GB |
17.5MB/s |
58MB/s |
|
bzip2 |
8.3GB |
1.1GB |
2.4MB/s |
9.5MB/s |
|
LZO |
8.3GB |
2.9GB |
49.3MB/s |
74.6MB/s |
http://google.github.io/snappy/
On a single core of a Core i7 processor in 64-bit mode, Snappy compresses at about 250 MB/sec or more and decompresses at about 500 MB/sec or more.
6.2、压缩配置参数
要在Hadoop中启用压缩,可以配置如下参数(mapred-site.xml文件中):
|
参数 |
默认值 |
阶段 |
建议 |
|
io.compression.codecs (在core-site.xml中配置) |
org.apache.hadoop.io.compress.DefaultCodec, org.apache.hadoop.io.compress.GzipCodec, org.apache.hadoop.io.compress.BZip2Codec, org.apache.hadoop.io.compress.Lz4Codec |
输入压缩 |
Hadoop使用文件扩展名判断是否支持某种编解码器 |
|
mapreduce.map.output.compress |
false |
mapper输出 |
这个参数设为true启用压缩 |
|
mapreduce.map.output.compress.codec |
org.apache.hadoop.io.compress.DefaultCodec |
mapper输出 |
使用LZO、LZ4或snappy编解码器在此阶段压缩数据 |
|
mapreduce.output.fileoutputformat.compress |
false |
reducer输出 |
这个参数设为true启用压缩 |
|
mapreduce.output.fileoutputformat.compress.codec |
org.apache.hadoop.io.compress. DefaultCodec |
reducer输出 |
使用标准工具或者编解码器,如gzip和bzip2 |
|
mapreduce.output.fileoutputformat.compress.type |
RECORD |
reducer输出 |
SequenceFile输出使用的压缩类型:NONE和BLOCK |
6.3、开启Map输出阶段压缩
开启map输出阶段压缩可以减少job中map和Reduce task间数据传输量。具体配置如下:
案例实操:
1)开启hive中间传输数据压缩功能
hive (default)>set hive.exec.compress.intermediate=true;
2)开启mapreduce中map输出压缩功能
hive (default)>set mapreduce.map.output.compress=true;
3)设置mapreduce中map输出数据的压缩方式
hive (default)>set mapreduce.map.output.compress.codec= org.apache.hadoop.io.compress.SnappyCodec;
4)执行查询语句
select count(1) from score;
6.4 开启Reduce输出阶段压缩
当Hive将输出写入到表中时,输出内容同样可以进行压缩。属性hive.exec.compress.output控制着这个功能。用户可能需要保持默认设置文件中的默认值false,这样默认的输出就是非压缩的纯文本文件了。用户可以通过在查询语句或执行脚本中设置这个值为true,来开启输出结果压缩功能。
案例实操:
1)开启hive最终输出数据压缩功能
hive (default)>set hive.exec.compress.output=true;
2)开启mapreduce最终输出数据压缩
hive (default)>set mapreduce.output.fileoutputformat.compress=true;
3)设置mapreduce最终数据输出压缩方式
hive (default)> set mapreduce.output.fileoutputformat.compress.codec = org.apache.hadoop.io.compress.SnappyCodec;
4)设置mapreduce最终数据输出压缩为块压缩
hive (default)>set mapreduce.output.fileoutputformat.compress.type=BLOCK;
5)测试一下输出结果是否是压缩文件
insert overwrite local directory '/export/servers/snappy' select * from score distribute by s_id sort by s_id desc;
第3节 hive高级用法:14、hive的数据压缩的更多相关文章
- 第3节 hive高级用法:16、17、18
第3节 hive高级用法:16.hive当中常用的几种数据存储格式对比:17.存储方式与压缩格式相结合:18.总结 hive当中的数据存储格式: 行式存储:textFile sequenceFile ...
- 第3节 hive高级用法:13、hive的函数
4.2.Hive参数配置方式 Hive参数大全: https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties 开 ...
- 第3节 hive高级用法:15、hive的数据存储格式介绍
hive当中的数据存储格式: 行式存储:textFile sequenceFile 都是行式存储 列式存储:orc parquet 可以使我们的数据压缩的更小,压缩的更快 数据查询的时候尽量不要用se ...
- 大数据技术之_08_Hive学习_04_压缩和存储(Hive高级)+ 企业级调优(Hive优化)
第8章 压缩和存储(Hive高级)8.1 Hadoop源码编译支持Snappy压缩8.1.1 资源准备8.1.2 jar包安装8.1.3 编译源码8.2 Hadoop压缩配置8.2.1 MR支持的压缩 ...
- Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包)
Tags: Hadoop Centos7.5安装分布式Hadoop2.6.0+Hbase+Hive(CDH5.14.2离线安装tar包) Centos7.5安装分布式Hadoop2.6.0+Hbase ...
- Spark入门到精通--(第九节)环境搭建(Hive搭建)
上一节搭建完了Hadoop集群,这一节我们来搭建Hive集群,主要是后面的Spark SQL要用到Hive的环境. Hive下载安装 下载Hive 0.13的软件包,可以在百度网盘进行下载.链接: h ...
- Hive的用法
1.Hive是Hadoop的一个子项目 利用MapReduce编程技术,实现了部分SQL语句.而且还提供SQL的编程接口.Hive推进Hadoop在数据仓库方面的发展. Hive是一个基于Hadoop ...
- 1.13-1.14 Hive Action
一.Hive Action 1.创建文件 [root@hadoop-senior oozie-apps]# pwd /opt/cdh-5.3.6/oozie-4.0.0-cdh5.3.6/oozie- ...
- hadoop之hive高级操作
在输出结果较多,需要输出到文件中时,可以在hive CLI之外执行hive -e "sql" > output.txt操作 但当SQL语句太长或太多时,这种方式不是很方便,可 ...
随机推荐
- SPOJ:Triple Sums(母函数+FFT)
You're given a sequence s of N distinct integers.Consider all the possible sums of three integers fr ...
- appium的get_attribute方法
转http://blog.csdn.net/bear_w/article/details/50330753 问题描述 当使用类似下面的代码获取元素的 content-desc 属性时,会报 NoSuc ...
- Mysql 告警 :Establishing SSL connection without server's identity verification is not recommended.
在集成spring与mybatis是,在spring.xml中配置了DataSource配置,数据库连接采用的是mysql的链接字符串: jdbc:mysql://localhost:3306/wor ...
- VScode相关
这就是我想要的 VSCode 插件! VS Code 快捷键(中英文对照版) visual studio code 配置vue开发环境 vscode 这样的注释怎么生成? 能让你开发效率翻倍的 VSC ...
- 【WIP】Swift4 异常处理, JSON处理
创建: 2018/03/24 更新: 2018/06/05 补充catch可以只带where不带模式 [任务表]TODO 异常处理语法 异常的发生 抛出例外 thorw 式 ● 抛出的值的类型必须采 ...
- 洛谷 P4552 [Poetize6] IncDec Sequence【差分+脑洞】
一看区间操作,很容易想到差分 所以就是先差分,然后为了保证最小步数,把政府差分抵消,也就相当于原数组区间加减 第二问,因为差分数组抵消之后不为0就需要使用n+1的虚拟位置,而这个的值其实没有,所以我们 ...
- jQuery笔记之data方法
成品图如下所示: 搭建HTML+CSS结构 <style> /* 给tpl设置为不可见,因为我们不需要用到他,我们只是要克隆他身上的东西,克隆完就把他删掉.就跟渣男一样!!!*/ .tpl ...
- RabbitMQ学习之HelloWorld(1)
RabbitMQ就是一个消息代理(message broker),可以用来接收和发送消息. 消息队列有一些黑话,我们来看下: Producer : 发送message的程序 Queue : 可以用来存 ...
- java getDocumentBase() 得到的文件夹路径
参考一个百度知道上的回答 举例说来,假设你的项目文件是xx,而这个xx文件夹是在D盘下的yy文件夹里,即项目文件的完整路径D:\yy\xx,则编译运行文件后,在xx文件夹里会产生名为build的文件夹 ...
- js 验证码倒计时效果
function settime(obj) { if(second == 0){ obj.removeAttribute("disabled"); obj.value=" ...