Strange Way to Express Integers
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 16839   Accepted: 5625

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31

Hint

All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

Source

 
今天最后一个中国剩余定理、、、、、、(还是水体。。。。。)

题目大意: 有一个数mod ri 等于ai  ,求这个数,若求不出来输出“-1”。

代码:
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 1000
#define ll long long
using namespace std;
ll n,a[N],m[N];
ll read()
{
    ll x=,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{
    )
    {
        x=,y=;
        return a;
    }
    ll r=exgcd(b,a%b,x,y),tmp;
    tmp=x,x=y,y=tmp-a/b*y;
    return r;
}
ll crt()
{
    ll a1=a[],m1=m[],a2,m2,c,d;
    ;i<=n;i++)
    {
        m2=m[i],a2=a[i];
        c=a2-a1;ll x=,y=;
        d=exgcd(m1,m2,x,y);
        ;
        x=x*c/d;
        int mod=m2/d;
        x=(mod+x%mod)%mod;
        a1+=x*m1;m1*=mod;
    }
    ) a1+=m1;
    return a1;
}
int main()
{
    while(~scanf("%lld",&n))
    {
        ;i<=n;i++)
         m[i]=read(),a[i]=read();
        printf("%lld\n",crt());
    }
    ;
}

poj——2891 Strange Way to Express Integers的更多相关文章

  1. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  2. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  3. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  4. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  5. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  6. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

  7. [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)

    题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...

  8. POJ 2891 Strange Way to Express Integers【扩展欧几里德】【模线性方程组】

    求解方程组 X%m1=r1 X%m2=r2 .... X%mn=rn 首先看下两个式子的情况 X%m1=r1 X%m2=r2 联立可得 m1*x+m2*y=r2-r1 用ex_gcd求得一个特解x' ...

  9. POJ 2891 Strange Way to Express Integers(中国剩余定理)

    题目链接 虽然我不懂... #include <cstdio> #include <cstring> #include <map> #include <cma ...

随机推荐

  1. 用 NPOI 组件实现数据导出

    利用 Nuget 安装 NPOI 组件. 所需引用的 dll:ICSharpCode.SharpZipLib.dll.NPOI.dll.NPOI.OOXML.dll.NPOI.OpenXml4Net. ...

  2. TensorFlow---基础---GFile

    使用TensorFlow的时候经常遇到 tf.gfile.exists().... 关于gfile,一个googler是这样给出的解释: The main roles of the tf.gfile ...

  3. JOptionPane.showMessageDialog出现在浏览器下面的解决方法

    将JOptionPane.showMessageDialog(null, result, "发布公告:", JOptionPane.INFORMATION_MESSAGE);中的参 ...

  4. lua_protobuf

    http://www.cocoachina.com/bbs/read.php?tid-227404.html

  5. CSS笔记集合

    CSS CSS 认识 CSS全称为层叠样式表,主要是用于定义HTML内容在浏览器内的显示样式. CSS样式由选择符和声明组成,而声明又由属性和值组成. CSS中注释语句:/*注释语句*/.Html中使 ...

  6. ajax怎么理解?

    Ajix是创建交互式网页的前端网页开发技术,不是一种语言,ajax是基于http来传输数据的,他是利用浏览器提供操作http的接口(XMLHttpRequest或者activeXobject),来操作 ...

  7. python学习笔记(6)——字典(Dictionary)

    dict= {key1 : value1, key2 : value2 ...} 关键词:字典中元素成对出现- key:value 格式- 两端{ } ,键:值,每对键值间用 ,隔开. 键key-唯一 ...

  8. 再谈布局之 UIStackView

    UIStackView 是 iOS9 新增的一个布局技术.熟练掌握相当节省布局时间. UIStackView 是 UIView 的子类,是用来约束子控件的一个控件.但他的作用仅限于此,他不能被渲染(即 ...

  9. java.lang.NoClassDefFoundError: org/hibernate/validator/internal/engine/DefaultClockProvider

    ①在springboot的spring-boot-starter-web默认引入了以下依赖: <dependency> <groupId>com.fasterxml.jacks ...

  10. CAD如何直接打印,不出现打印对话框?

    主要用到函数说明: MxDrawXCustomFunction::Mx_Print 直接打印,不出现打印对话框,详细说明如下: 参数 说明 double ptLBx 打印的范围左下角x double ...