Fast Matrix Calculation 矩阵快速幂
Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.
Step 1: Calculate a new N*N matrix C = A*B.
Step 2: Calculate M = C^(N*N).
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
Step 4: Calculate the sum of all the elements in M’.
Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.
InputThe input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.
The end of input is indicated by N = K = 0.OutputFor each case, output the sum of all the elements in M’ in a line.Sample Input
4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0
Sample Output
14
56 C = A*B
C^1000 = A*(B*A)^999*B 简化到k*k上的矩阵计算方便
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 1007
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-9;
int n, k;
struct Mat
{
int a[10][10];
Mat()
{
memset(a, 0, sizeof(a));
}
Mat operator * (const Mat& rhs)const
{
Mat ret;
for (int i = 0; i < k; i++)
{
for (int j = 0; j < k; j++)
{
if (a[i][j])
{
for (int t = 0; t < k; t++)
{
ret.a[i][t] = (ret.a[i][t] + a[i][j] * rhs.a[j][t]) % 6;
}
}
}
}
return ret;
}
};
Mat fpow(Mat a, int b)
{
Mat ret;
for (int i = 0; i < k; i++)
ret.a[i][i] = 1;
while (b != 0)
{
if (b & 1)
ret = a*ret;
a = a*a;
b /= 2;
}
return ret;
}
int m1[MAXN][7], m2[7][MAXN], ans[MAXN][MAXN], tmp[MAXN][MAXN];
int main()
{
while (scanf("%d%d", &n, &k), n + k)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < k; j++)
scanf("%d", &m1[i][j]);
for (int i = 0; i < k; i++)
for (int j = 0; j < n; j++)
scanf("%d", &m2[i][j]);
Mat M;
for (int i = 0; i < k; i++)
{
for (int j = 0; j < k; j++)
{
for (int t = 0; t < n; t++)
{
M.a[i][j] = (M.a[i][j] + m2[i][t] * m1[t][j])%6;
}
}
}
M = fpow(M, n*n - 1);
memset(tmp, 0, sizeof(tmp));
memset(ans, 0, sizeof(ans));
for (int i = 0; i < n; i++)
{
for (int j = 0; j < k; j++)
{
for (int t = 0; t < k; t++)
tmp[i][j] = (tmp[i][j] + m1[i][t] * M.a[t][j])%6;
}
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
for (int t = 0; t < k; t++)
ans[i][j] = (ans[i][j] + tmp[i][t] * m2[t][j])%6;
}
}
int res = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res += ans[i][j]%6;
printf("%d\n", res);
}
}
Fast Matrix Calculation 矩阵快速幂的更多相关文章
- hdu4965 Fast Matrix Calculation 矩阵快速幂
One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...
- HDU 4965 Fast Matrix Calculation 矩阵快速幂
题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...
- hdu 4965 Fast Matrix Calculation(矩阵高速幂)
题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...
- HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂
题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...
- ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)
Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...
- bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希
题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...
- HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律
一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...
- hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...
- HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...
随机推荐
- ASP.NET SQL 总结(2)
Sql常见面试题(总结) 1.用一条SQL语句 查询出每门课都大于80分的学生姓名 name kecheng fenshu 张三 语文 81 张三 数学 ...
- 生成自签名ca 证书 使nginx 支持https
创建服务器私钥,命令会让你输入一个口令:$ openssl genrsa -des3 -out server.key 1024创建签名请求的证书(CSR):$ openssl req -new -ke ...
- ROS-USB摄像头
前言:演示使用usb摄像头功能,推荐使用方法二. 首先要有一个usb摄像头,本次使用的是罗技(Logitech)摄像头. 一.使用软件库里的uvc-camera功能包 1.1 检查摄像头 lsusb ...
- N - Binomial Showdown (组合数学)
Description In how many ways can you choose k elements out of n elements, not taking order into acco ...
- [转]Paging, Searching and Sorting in ASP.Net MVC 5
本文转自:http://www.c-sharpcorner.com/UploadFile/4b0136/perform-paging-searching-sorting-in-Asp-Net-mvc- ...
- myeclipse中js文件报错
这几天在myeclipse中添加文件时,会报错,但是代码是从官网上下载的,没有错误,只是myeclipse的检查较为严格.在网上找到解决方案,希望可以帮到强迫症的人. 解决步骤: 1.window→P ...
- Js onmouseover和onmouseout小特效
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- 生成100个Div
<!doctype html><html><head><meta charset="utf-8"><title>无标题文 ...
- 启用adb wifi无线调试功能(无需root)
1 工具 电脑.手机 2 前提 电脑和手机出于同一网段 3 步骤 以管理员方式打开cmd,运行 adb tcpip 5555(执行tcpip调试模式) adb connect 192.168. ...
- Python基础语法(转)
作者:Peter 出处:http://www.cnblogs.com/Peter-Zhang/ Python 基础语法(一) Python的特点 1. 简单 Python是一种代表简单思想的语言. ...