One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

Step 1: Calculate a new N*N matrix C = A*B. 
Step 2: Calculate M = C^(N*N). 
Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’. 
Step 4: Calculate the sum of all the elements in M’.

Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.

InputThe input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

The end of input is indicated by N = K = 0.OutputFor each case, output the sum of all the elements in M’ in a line.Sample Input

4 2
5 5
4 4
5 4
0 0
4 2 5 5
1 3 1 5
6 3
1 2 3
0 3 0
2 3 4
4 3 2
2 5 5
0 5 0
3 4 5 1 1 0
5 3 2 3 3 2
3 1 5 4 5 2
0 0

Sample Output

14
56 C = A*B
C^1000 = A*(B*A)^999*B 简化到k*k上的矩阵计算方便
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<sstream>
#include<algorithm>
#include<queue>
#include<deque>
#include<iomanip>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<fstream>
#include<memory>
#include<list>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 1007
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-9;
int n, k;
struct Mat
{
int a[10][10];
Mat()
{
memset(a, 0, sizeof(a));
}
Mat operator * (const Mat& rhs)const
{
Mat ret;
for (int i = 0; i < k; i++)
{
for (int j = 0; j < k; j++)
{
if (a[i][j])
{
for (int t = 0; t < k; t++)
{
ret.a[i][t] = (ret.a[i][t] + a[i][j] * rhs.a[j][t]) % 6;
}
}
}
}
return ret;
}
};
Mat fpow(Mat a, int b)
{
Mat ret;
for (int i = 0; i < k; i++)
ret.a[i][i] = 1;
while (b != 0)
{
if (b & 1)
ret = a*ret;
a = a*a;
b /= 2;
}
return ret;
}
int m1[MAXN][7], m2[7][MAXN], ans[MAXN][MAXN], tmp[MAXN][MAXN];
int main()
{
while (scanf("%d%d", &n, &k), n + k)
{
for (int i = 0; i < n; i++)
for (int j = 0; j < k; j++)
scanf("%d", &m1[i][j]);
for (int i = 0; i < k; i++)
for (int j = 0; j < n; j++)
scanf("%d", &m2[i][j]);
Mat M;
for (int i = 0; i < k; i++)
{
for (int j = 0; j < k; j++)
{
for (int t = 0; t < n; t++)
{
M.a[i][j] = (M.a[i][j] + m2[i][t] * m1[t][j])%6;
}
}
}
M = fpow(M, n*n - 1);
memset(tmp, 0, sizeof(tmp));
memset(ans, 0, sizeof(ans));
for (int i = 0; i < n; i++)
{
for (int j = 0; j < k; j++)
{
for (int t = 0; t < k; t++)
tmp[i][j] = (tmp[i][j] + m1[i][t] * M.a[t][j])%6;
}
}
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
for (int t = 0; t < k; t++)
ans[i][j] = (ans[i][j] + tmp[i][t] * m2[t][j])%6;
}
}
int res = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res += ans[i][j]%6;
printf("%d\n", res);
}
}
 

Fast Matrix Calculation 矩阵快速幂的更多相关文章

  1. hdu4965 Fast Matrix Calculation 矩阵快速幂

    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learni ...

  2. HDU 4965 Fast Matrix Calculation 矩阵快速幂

    题意: 给出一个\(n \times k\)的矩阵\(A\)和一个\(k \times n\)的矩阵\(B\),其中\(4 \leq N \leq 1000, \, 2 \leq K \leq 6\) ...

  3. hdu 4965 Fast Matrix Calculation(矩阵高速幂)

    题目链接.hdu 4965 Fast Matrix Calculation 题目大意:给定两个矩阵A,B,分别为N*K和K*N. 矩阵C = A*B 矩阵M=CN∗N 将矩阵M中的全部元素取模6,得到 ...

  4. HDU4965 Fast Matrix Calculation —— 矩阵乘法、快速幂

    题目链接:https://vjudge.net/problem/HDU-4965 Fast Matrix Calculation Time Limit: 2000/1000 MS (Java/Othe ...

  5. ACM学习历程——HDU5015 233 Matrix(矩阵快速幂)(2014陕西网赛)

    Description In our daily life we often use 233 to express our feelings. Actually, we may say 2333, 2 ...

  6. bzoj 4128: Matrix ——BSGS&&矩阵快速幂&&哈希

    题目 给定矩阵A, B和模数p,求最小的正整数x满足 A^x = B(mod p). 分析 与整数的离散对数类似,只不过普通乘法换乘了矩阵乘法. 由于矩阵的求逆麻烦,使用 $A^{km-t} = B( ...

  7. HDU 4965 Fast Matrix Calculation 矩阵乘法 乘法结合律

    一种奇葩的写法,纪念一下当时的RE. #include <iostream> #include <cstdio> #include <cstring> #inclu ...

  8. hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律

    http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...

  9. HDU - 4965 Fast Matrix Calculation 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4965 题意 给出两个矩阵 一个A: n * k 一个B: k * n C = A * B M = (A ...

随机推荐

  1. ACM_错排(递推dp)

    RPG的错排 Time Limit: 2000/1000ms (Java/Others) Problem Description: 今年暑假GOJ集训队第一次组成女生队,其中有一队叫RPG,但做为集训 ...

  2. zepto中给不存在的元素设置样式并绑定事件的坑

    在移动端使用zepto选择器时,一般如果元素不存在会返回一个空的zepto对象. zepto在设置元素样式时,提供了两个入参方式,一种键值对方式$(".ter").css({&qu ...

  3. HTML DOM getElementById() 方法

    定义和用法 getElementById() 方法可返回对拥有指定 ID 的第一个对象的引用. 语法 document.getElementById(id) 说明 HTML DOM 定义了多种查找元素 ...

  4. MyElipse如何添加Emmet插件

    把这个jar文件放到myeclipse2014安装目录下dropins文件夹中,然后重启myeclipse即可. 可到window-->perferences里查看,如果成功则会看到emmet选 ...

  5. Git命令add和commit的区别

    要想弄明白git add和git commit的区别,首先我们需要知道三个概念:工作区(Working Directory).版本库(Repository).暂存区(Stage or index). ...

  6. Pro ASP.Net Core MVC 6th 第四章

    第四章 C# 关键特征 在本章中,我描述了Web应用程序开发中使用的C#特征,这些特征尚未被广泛理解或经常引起混淆. 这不是关于C#的书,但是,我仅为每个特征提供一个简单的例子,以便您可以按照本书其余 ...

  7. jQuery之基本选择器Practice

    一.在输入框中输入数字,点击按钮,实现对应事件的功能. html代码: <input id="txt1" type="text" value=" ...

  8. 三维重建:GitHub百度Apollo 2.0

    GitHub:https://github.com/ApolloAuto/apollo 1. 关于Apollo的数据:Apollo的数据会如何开放? 自动驾驶数据将包括具有高分辨率图像和像素级别标注的 ...

  9. putty源码阅读----plink

    一直对ssh协议的各种客户端实现比较入迷,遍寻了很多ssh协议实现也用了很多的库,发现依赖太多 putty是最纯洁依赖第三方几乎为0的客户端实现,先从plink处开始入手. 1.putty目录 才刚开 ...

  10. CAD绘制一个单行文字(com接口VB语言)

    主要用到函数说明: _DMxDrawX::DrawText 绘制一个单行文字.详细说明如下: 参数 说明 DOUBLE dPosX >文字的位置的X坐标 DOUBLE dPosY 文字的位置的Y ...