BZOJ_5311_贞鱼_决策单调性+带权二分
BZOJ_5311_贞鱼_决策单调性+带权二分
Description
Input
Output
Sample Input
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 1 1
1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1
1 1 1 1 1 0 1 1
1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0
Sample Output
编号为1,2,3的贞鱼一辆车:怨气值和为3;
编号为4,5,6的贞鱼一辆车:怨气值和为3;
编号为7,8的贞鱼一辆车:怨气值和为1。
最小怨气值总和为 3 + 3 + 1 = 7 。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
int x=0; char ch=nc();
while(ch<'0'||ch>'9') ch=nc();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=nc();
return x;
}
#define N 4050
int n,K,s[N][N],f[N],g[N],C;
int Y(int j,int i) {
return f[j]+(s[j][j]+s[i][i]-s[i][j]*2)/2+C;
}
struct A {
int l,r,p;
}Q[N];
int find(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(x,mid)>Y(a.p,mid)) l=mid+1;
else r=mid;
}
return l;
}
void check() {
int i;
int l=0,r=0;
f[0]=0; g[0]=0;
Q[r++]=(A){0,n,0};
for(i=1;i<=n;i++) {
while(l<r&&Q[l].r<i) l++;
f[i]=Y(Q[l].p,i); g[i]=g[Q[l].p]+1;
if(Y(i,n)<=Y(Q[r-1].p,n)) {
while(l<r&&Y(i,Q[r-1].l)<=Y(Q[r-1].p,Q[r-1].l)) r--;
if(l==r) Q[r++]=(A){i,n,i};
else {
int x=find(Q[r-1],i);
Q[r-1].r=x-1;
Q[r++]=(A){x,n,i};
}
}
}
}
int main() {
n=rd(); K=rd();
register int i,j;
for(i=1;i<=n;i++) {
for(j=1;j<=n;j++) {
s[i][j]=rd();
s[i][j]+=s[i-1][j]+s[i][j-1]-s[i-1][j-1];
}
}
int l=0,r=10000;
while(l<r) {
C=(l+r)>>1;
check();
if(g[n]>K) l=C+1;
else r=C;
}
l--;
C=l; check();
printf("%d\n",f[n]-K*l);
}
BZOJ_5311_贞鱼_决策单调性+带权二分的更多相关文章
- BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分
BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分 Description 要完成一个由s个子项目组成的项目,给b(b>=s)个部门分配,从而把b个部门 ...
- DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)
前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...
- BZOJ_2369_区间_决策单调性
BZOJ_2369_区间_决策单调性 Description 对于一个区间集合 {A1,A2……Ak}(K>1,Ai不等于Aj(i不等于J),定义其权值 S=|A1∪A2∪……AK|*|A1 ...
- BZOJ.5311.贞鱼(DP 决策单调)
题目链接 很容易写出\(O(n^2k)\)的DP方程.然后显然决策点是单调的,于是维护决策点就可以了.. 这个过程看代码或者别的博客吧我不写了..(其实是忘了) 这样复杂度\(O(nk\log n)\ ...
- 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)
题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...
- 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...
- 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分
题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...
- 6.13校内互测 (DP 带权二分 斜率优化)
丘中有麻plant 改自这儿,by ZBQ. 还有隐藏的一页不放了.. 直接走下去的话,如果开始时间确定那么到每个点的时间确定,把time减去dis就可以去掉路程的影响了. 这样对于减去d后的t,如果 ...
- Codeforces.739E.Gosha is hunting(DP 带权二分)
题目链接 \(Description\) 有\(n\)只精灵,两种精灵球(高级和低级),每种球能捕捉到第\(i\)只精灵的概率已知.求用\(A\)个低级球和\(B\)个高级球能捕捉到精灵数的最大期望. ...
随机推荐
- hdu4619 / 最大独立集
题意,一个矩阵,上面可以横放或者竖着放骨牌(1X2)保证横的与横的不重叠,竖的和竖的不重叠,求拿掉最小的牌,使所有的都不重叠. 分析:一看,不重叠就是没有边,拿最少,就是留最多,最大独立集啊!二分图, ...
- 初学Java经典例子
我自己看的书的理解学习Java就是学习对象,就像谈恋爱,你对她多付出,收货就多(跑题了对象是啥??对象就是实体,通过类可以生成具有特定状态(或者叫属性)和行为或动作的实例,问题来了怎么创建? new一 ...
- Deep learning网络调参技巧
参数初始化 下面几种方式,随便选一个,结果基本都差不多.但是一定要做.否则可能会减慢收敛速度,影响收敛结果,甚至造成Nan等一系列问题.n_in为网络的输入大小,n_out为网络的输出大小,n为n_i ...
- spring-quartz定时任务使用小结
在实际项目中,通常须要用到定时任务(定时作业).spring框架提供了非常好的实现. 1. 下载spring-quartz插件包 这里默认当前系统中是集成了spring框架的基本功能的.去网上下载s ...
- hdu 1679 The Unique MST (克鲁斯卡尔)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24152 Accepted: 8587 D ...
- antd 如何让 Row 中的 Col 自动换行?
1.解决方案 在需要换行处,设置一个空的 Col // 空白(特殊情况处理) const empty = ( <Col md={6} sm={24}></Col> ); .
- Ubuntu搭建Android开发环境
前言 由于迁移到新的笔记本,所以Android开发环境须要又一次配置了.android官网有配置教程,我正好回想一遍 配置Java环境 下载jdk.官网地址:http://www.oracle.com ...
- java开始到熟悉62
(说明:昨天网络出现了问题导致昨天的没有按时上传,这篇算是昨天的,今天晚上照常上传今天的内容) 本次主题:数组拷贝.排序.二分法 1.数组拷贝 a.java.lang中System 类包含一些有用的类 ...
- subclassdlgitem
subclassdlgitem 该函数用来子类化一个控件. Subclass(子类化)是MFC中最常用的窗体技术之一.子类化完成两个工作:一是把窗体类对象attach到一个windows窗体实体中(即 ...
- python day 13 生成器 以及 推导式
1.生成器的本质是迭代器 2.生成器函数 def fn() 函数体 yield fn() g = fn() 此时这个g就是生成器 所以g 是可迭代的 g._ _next_ _ 每执行一次_ _nex ...