【Sdoi2008】沙拉公主的困惑
【题目链接】
【算法】
gcd(a,b)=gcd(a mod b, b),又m!|n!
则有ans=(n!/m!)·ϕ(m!)
由ϕ(n)=n(1-1/p1)(1-1/p2)...(1-1/pk)
ans=n!(1-1/p1)(1-1/p2)...(1-1/pk)
这里p1...pk为m!的所有质因子,即不大于m的所有素数。
设f(n)=n!,g(m)=(1-1/p1)(1-1/p2)...(1-1/pk)
都能在O(n)时间内预处理(利用线性筛和线性求逆元)
则ans=f(n)g(m),O(1)回答询问。
【代码】
#include<bits/stdc++.h>
using namespace std;
const int MAXN = ;
typedef long long ll; ll i,k,tmp,T,R,N,M,tot;
ll prime[],t[MAXN+];
int f[MAXN+],fac[MAXN+],inv[MAXN+]; template <typename T> inline void read(T &x) {
ll f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) { if (c == '-') f = -f; }
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
template <typename T> inline void write(T x) {
if (x < ) { putchar('-'); x = -x; }
if (x > ) write(x/);
putchar(x%+'');
}
template <typename T> inline void writeln(T x) {
write(x);
puts("");
} int main() { read(T); read(R); for (i = ; i <= MAXN; i++) {
if (!f[i]) prime[++tot] = f[i] = i;
for (k = ; k <= tot; k++) {
tmp = i * prime[k];
if (tmp > MAXN) break;
f[tmp] = prime[k];
if (f[i] == prime[k]) break;
}
}
fac[] = ; inv[] = ; t[] = ;
for (i = ; i <= MAXN; i++) fac[i] = fac[i-] * i % R;
for (i = ; i <= MAXN && i < R; i++) inv[i] = (R - R / i) * inv[R%i] % R;
for (i = ; i <= MAXN; i++) {
if (f[i] != i) t[i] = t[i-];
else t[i] = t[i-] * (i - ) % R * inv[i%R] % R;
}
while (T--) {
read(N); read(M);
writeln(fac[N]*t[M]%R);
} return ;
}
【Sdoi2008】沙拉公主的困惑的更多相关文章
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 洛咕 P2155 [SDOI2008]沙拉公主的困惑
洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
- 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数
[BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...
- 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数
[bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...
- 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告
P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...
随机推荐
- Java的常用对象
PO:持久对象 (persistent object),po(persistent object)就是在Object/Relation Mapping框架中的Entity,po的每个属性基本上都对应数 ...
- 洛谷P2058 仪仗队
P2058 仪仗队 24通过 34提交 题目提供者shengmingkexue 标签数论(数学相关) 难度普及+/提高 提交该题 讨论 题解 记录 最新讨论 暂时没有讨论 题目描述 作为体育委员,C君 ...
- Codeforces 961 E Tufurama
Discription One day Polycarp decided to rewatch his absolute favourite episode of well-known TV seri ...
- Spring中Beans的自动装配概述
以下内容引用自http://wiki.jikexueyuan.com/project/spring/beans-autowiring.html: 在之前的做法上会参照这样的顺序:1.使用<bea ...
- iOS 内存管理策略
内存管理策略(memory Management Policy) NSObject protocol中定义的的方法和标准命名惯例一起提供了一个引用计数环境,内存管理的基本模式处于这个环境中.NSObj ...
- python实现QQ机器人(自己主动登录,获取群消息,发送群消息)
一次偶然的机会我看见了一个群里的一个QQ号总是依据你所发的消息自己主动回复,当时非常感觉到奇妙.我知道能够模拟登录站点,没想到居然也能模拟登录QQ,首先自己想到的就是怎样实现模拟登录PC端的QQ, 開 ...
- c程序设计语言第一章5
练习1.20请编写程序d e t a b
- C++中结构和类的区别
首先从从语言角度来看,c语言是一种结构化的语言,便于按照模块化的方式来组织程序,易于程序员的调试和维护,而对于c++来说,我么可以认为它是标准c的超集.实际上所有的c程序也是c++程序.但两者之间还是 ...
- nextSibling和previousSibling
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...
- 项目Beta冲刺(团队4/7)
项目Beta冲刺(团队4/7) 团队名称: 云打印 作业要求: 项目Beta冲刺(团队) 作业目标: 完成项目Beta版本 团队队员 队员学号 队员姓名 个人博客地址 备注 221600412 陈宇 ...