题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4987

其实就是在树上找有 k 个点的连通块(路径上的点都选是最优的),之间的边都走了两遍,只有一条路径(a[1] -> a[k])走了一遍;

于是 f[x][j][0/1/2] 表示以 x 为根的子树内选了 k 个点,有 0/1/2 个端点(路径结尾)的最小值;

但是为什么转移必须是推过去而不能是加回来?TLE...?真是太奇怪了。

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int const xn=,inf=1e9;
int n,m,hd[xn],ct,to[xn<<],nxt[xn<<],w[xn<<],f[xn][xn][],siz[xn],ans;
int rd()
{
int ret=,f=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=; ch=getchar();}
while(ch>=''&&ch<='')ret=(ret<<)+(ret<<)+ch-'',ch=getchar();
return f?ret:-ret;
}
void add(int x,int y,int z){to[++ct]=y; nxt[ct]=hd[x]; w[ct]=z; hd[x]=ct;}
void dfs(int x,int fa)
{
siz[x]=;
f[x][][]=f[x][][]=;
for(int i=hd[x],u;i;i=nxt[i])
{
if((u=to[i])==fa)continue;
dfs(u,x);
for(int j=siz[x];j>=;j--)
for(int k=siz[u];k>=;k--)
{
f[x][j+k][]=min(f[x][j+k][],f[x][j][]+f[u][k][]+(w[i]<<));
f[x][j+k][]=min(f[x][j+k][],min(f[x][j][]+f[u][k][]+(w[i]<<),f[x][j][]+f[u][k][]+w[i]));
f[x][j+k][]=min(f[x][j+k][],f[x][j][]+f[u][k][]+w[i]);
f[x][j+k][]=min(f[x][j+k][],min(f[x][j][]+f[u][k][]+(w[i]<<),f[x][j][]+f[u][k][]+(w[i]<<)));
}
// for(int j=min(m,siz[x]+siz[u]);j>=2;j--) //--TLE???
// for(int k=1;k<=min(j-1,siz[u]);k++)//j-1
// {
// f[x][j][0]=min(f[x][j][0],f[x][j-k][0]+f[u][k][0]+(w[i]<<1));
// f[x][j][1]=min(f[x][j][1],min(f[x][j-k][1]+f[u][k][0]+(w[i]<<1),f[x][j-k][0]+f[u][k][1]+w[i]));
// f[x][j][2]=min(f[x][j][2],f[x][j-k][1]+f[u][k][1]+w[i]);
// f[x][j][2]=min(f[x][j][2],min(f[x][j-k][0]+f[u][k][2]+(w[i]<<1),f[x][j-k][2]+f[u][k][0]+(w[i]<<1)));//!
// }
siz[x]+=siz[u];
}
for(int i=;i<=;i++)ans=min(ans,f[x][m][i]);//
}
int main()
{
n=rd(); m=rd();
for(int i=,x,y,z;i<n;i++)
{
x=rd(); y=rd(); z=rd();
add(x,y,z); add(y,x,z);
}
memset(f,0x3f,sizeof f); ans=inf;
dfs(,);
printf("%d\n",ans);
return ;
}

bzoj 4987 Tree —— 树形DP的更多相关文章

  1. 熟练剖分(tree) 树形DP

    熟练剖分(tree) 树形DP 题目描述 题目传送门 分析 我们设\(f[i][j]\)为以\(i\)为根节点的子树中最坏时间复杂度小于等于\(j\)的概率 设\(g[i][j]\)为当前扫到的以\( ...

  2. BZOJ.3227.[SDOI2008]红黑树tree(树形DP 思路)

    BZOJ orz MilkyWay天天做sxt! 首先可以树形DP:\(f[i][j][0/1]\)表示\(i\)个点的子树中,黑高度为\(j\),根节点为红/黑节点的最小红节点数(最大同理). 转移 ...

  3. hdu-5834 Magic boy Bi Luo with his excited tree(树形dp)

    题目链接: Magic boy Bi Luo with his excited tree Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: ...

  4. CF 461B Appleman and Tree 树形DP

    Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other ...

  5. codeforces 161D Distance in Tree 树形dp

    题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...

  6. hdu6035 Colorful Tree 树形dp 给定一棵树,每个节点有一个颜色值。定义每条路径的值为经过的节点的不同颜色数。求所有路径的值和。

    /** 题目:hdu6035 Colorful Tree 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6035 题意:给定一棵树,每个节点有一个颜色值.定 ...

  7. 5.10 省选模拟赛 tree 树形dp 逆元

    LINK:tree 整场比赛看起来最不可做 确是最简单的题目. 感觉很难写 不过单独考虑某个点 容易想到树形dp的状态. 设f[x]表示以x为根的子树内有黑边的方案数. 白边方案只有一种所以不用记录. ...

  8. Codeforces Round #263 Div.1 B Appleman and Tree --树形DP【转】

    题意:给了一棵树以及每个节点的颜色,1代表黑,0代表白,求将这棵树拆成k棵树,使得每棵树恰好有一个黑色节点的方法数 解法:树形DP问题.定义: dp[u][0]表示以u为根的子树对父亲的贡献为0 dp ...

  9. codeforces Round #263(div2) D. Appleman and Tree 树形dp

    题意: 给出一棵树,每个节点都被标记了黑或白色,要求把这棵树的其中k条变切换,划分成k+1棵子树,每颗子树必须有1个黑色节点,求有多少种划分方法. 题解: 树形dp dp[x][0]表示是以x为根的树 ...

随机推荐

  1. luogu P1080 国王游戏

    题目描述 恰逢 H 国国庆,国王邀请 n 位大臣来玩一个有奖游戏.首先,他让每个大臣在左.右手上面分别写下一个整数,国王自己也在左.右手上各写一个整数.然后,让这 n 位大臣排成一排,国王站在队伍的最 ...

  2. java多线程异步执行

    import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.ut ...

  3. tcp三次握手和syn 洪水攻击

    1. 连接后,所有的 ack 为1才有效(连接后,ack 也一般都是1) 2. 建立连接3次握手, 如何确认对方收到了你发的包, seq 是自己发出去的,自己知道seq的值.所以怎么确认对方收到了自己 ...

  4. 使用Python写的第一个网络爬虫程序

    今天尝试使用python写一个网络爬虫代码,主要是想訪问某个站点,从中选取感兴趣的信息,并将信息依照一定的格式保存早Excel中. 此代码中主要使用到了python的以下几个功能,因为对python不 ...

  5. Version和Build的差别

    [1]概念 iOS的版本号号.一个叫做Version,一个叫做Build,这两个值都能够在Xcode 中选中target,点击"Summary"后看到. Version在plist ...

  6. BZOJ 题目1036: [ZJOI2008]树的统计Count(Link Cut Tree,改动点权求两个最大值和最大值)

    1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 8421  Solved: 3439 [Submi ...

  7. Solidedge如何修改特征的参数

    我已经长出了60MM,现在发现不对,要改成50MM.右击这个特征,点击编辑定义   直接左键单击尺寸,修改数据,按回车,鼠标右键,即可.    

  8. 忘掉VNC/RDP,拿起手中的MobaXterm轻松上手远程桌面

    前言 原创文章,转载引用务必注明链接. 这期属于番外篇,随便写写.吐槽一下自己,关于"减少eMMC擦写,延长NAND寿命提升性能"的坑还没填完,都不好愉快地写点轻松的小项目灌水了. ...

  9. 【转载】究竟啥才是互联网架构“高可用”

    一.什么是高可用 高可用HA(High Availability)是分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计减少系统不能提供服务的时间. 假设系统一直能够提供服务,我们说系统的可用 ...

  10. 《Unix网络编程》中的错误处理函数

    #include "net.h" #include <syslog.h> // syslog() int daemon_proc; static void err_do ...