矩阵乘法一般不满足交换律!!所以快速幂里需要注意乘的顺序!!

其实不难,设f[i]为i的答案,那么f[i]=(f[i-1]*w[i]+i)%mod,w[i]是1e(i的位数),这个很容易写成矩阵的形式,然后按每一位分别矩阵快速幂即可

矩阵:

f[i-1] w[i] 1 1 f[i]

i-1 * 0 1 1 = i

1 0 0 1 1

#include<iostream>
#include<cstdio>
using namespace std;
long long n,mod,t;
long long mul(long long a,long long b)
{
long long r=0;
while(b)
{
if(b&1)
r=(r+a)%mod;
a=(a<<1)%mod;
b>>=1;
}
return r;
}
struct qwe
{
long long a[5][5];
qwe operator * (const qwe &b) const
{
qwe c;
for(int i=1;i<=3;i++)
for(int j=1;j<=3;j++)
{
c.a[i][j]=0;
for(int k=1;k<=3;k++)
c.a[i][j]=(c.a[i][j]+mul(a[i][k],b.a[k][j]))%mod;
}
return c;
}
}r;
void wk(long long t,long long la)
{
long long b=la-t/10+1;//cerr<<b<<endl;
qwe a;
a.a[1][1]=t,a.a[1][2]=1,a.a[1][3]=1;
a.a[2][1]=0,a.a[2][2]=1,a.a[2][3]=1;
a.a[3][1]=0,a.a[3][2]=0,a.a[3][3]=1;
while(b)
{
if(b&1)
r=a*r;
a=a*a;
b>>=1;
}
}
int main()
{
scanf("%lld%lld",&n,&mod);
r.a[1][1]=r.a[2][2]=r.a[3][3]=1;
for(t=10;t<=n;)
wk(t,t-1),t*=10ll;
wk(t,n);
printf("%lld\n",r.a[1][3]);
return 0;
}

bzoj 2326: [HNOI2011]数学作业【dp+矩阵快速幂】的更多相关文章

  1. P3216 [HNOI2011]数学作业 (矩阵快速幂)

    P3216 [HNOI2011]数学作业 题目描述 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 NN 和 MM ,要求计算 Concatenate (1 .. N ...

  2. BZOJ2326 [HNOI2011]数学作业(分块矩阵快速幂)

    题意: 定义函数Concatenate (1 ..N)是将所有正整数 1, 2, …, N 顺序连接起来得到的数,如concatenate(1..5)是12345,求concatenate(1...n ...

  3. BZOJ2326 HNOI2011数学作业(矩阵快速幂)

    考虑暴力,那么有f(n)=(f(n-1)*10digit+n)%m.注意到每次转移是类似的,考虑矩阵快速幂.首先对于位数不同的数字分开处理,显然这只有log种.然后就得到了f(n)=a·f(n-1)+ ...

  4. [BZOJ 2326] [HNOI2011] 数学作业 【矩阵乘法】

    题目链接:BZOJ - 2326 题目分析 数据范围达到了 10^18 ,显然需要矩阵乘法了! 可以发现,向数字尾部添加一个数字 x 的过程就是 Num = Num * 10^k + x .其中 k ...

  5. BZOJ2326 [HNOI2011]数学作业 【矩阵快速幂】

    题解 我们设f[i]表示前i个数模M意义下的答案 则f[i] = f[i - 1] * 100...0 + i[i是几位就有几个0] 可以写出矩阵递推式: 之后按位数分组矩乘就好了 #include& ...

  6. BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )

    BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...

  7. BZOJ 2326 数学作业(分段矩阵快速幂)

    实际上,对于位数相同的连续段,可以用矩阵快速幂求出最后的ans,那么题目中一共只有18个连续段. 分段矩阵快速幂即可. #include<cstdio> #include<iostr ...

  8. BZOJ 2326: [HNOI2011]数学作业(矩阵乘法)

    传送门 解题思路 NOIp前看到的一道题,当时想了很久没想出来,NOIp后拿出来看竟然想出来了.注意到有递推\(f[i]=f[i-1]*poww[i]+i\),\(f[i]\)表示\(1-i\)连接起 ...

  9. BZOJ 1009: [HNOI2008]GT考试( dp + 矩阵快速幂 + kmp )

    写了一个早上...就因为把长度为m的也算进去了... dp(i, j)表示准考证号前i个字符匹配了不吉利数字前j个的方案数. kmp预处理, 然后对于j进行枚举, 对数字0~9也枚举算出f(i, j) ...

随机推荐

  1. [Bzoj1297][Scoi2009 ]迷路 (矩阵乘法 + 拆点)

    1297: [SCOI2009]迷路 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1385  Solved: 993[Submit][Status] ...

  2. DTrace C++ Mysteries Solved 转

      I’ve been using DTrace on Leopard in my recent work, and while it’s a great tool, the C++ support ...

  3. TList实现的任务队列

    TList实现的任务队列 var g_tasks: TList; type PTRecvPack = ^TRecvPack; TRecvPack = record // 接收到的原数据 socket: ...

  4. linux动态库的种种要点

    linux下使用动态库,基本用起来还是非常easy.但假设我们的程序中大量使用动态库来实现各种框架/插件,那么就会遇到一些坑,掌握这些坑才有利于程序更稳健地执行. 本篇先谈谈动态库符号方面的问题. 測 ...

  5. Hdfs的ACL測试

    Hadoop从2.4.0版本号開始支持hdfs的ACL,在CDH5.0其中也集成了该特性,以下对其进行一些測试: unnamed user (file owner) 文件的拥有者 unnamed gr ...

  6. 我所写的CNN框架 VS caffe

    我所写的CNN框架 VS caffe 一个月前.自己模仿caffe实现了一个卷积神经网络的框架. 同样点 1无缝支持CPU和GPU模式,GPU模式使用cuda实现. 不同点 1我的CNN不依赖与不论什 ...

  7. 【Mongodb教程 第十四课 】MongoDB 投影

    mongodb 投影意思是只选择必要的数据而不是选择一个文件的数据的整个.如果一个文档有5个字段,需要显示只有3个,然后选择其中只有3个字段. find() 方法 MongoDB 的find()方法, ...

  8. Domino/Xpages Bootstrap 动态生成首页功能

    因为之前用户须要做个动态首页的功能,但一般用户又不熟HTML,所以最佳的方法能够使用拖动的方法来配置首页,一些主要的组件是已经帮用户的依据实际数据情况已经制作OK,用户仅仅须要简单配置就能够更改首页, ...

  9. AWK教程

    1. IBM:GAWK入门:AWK语言基础 2. Unix AWK使用手册 3. 台湾中研院计算中心ASPAC计划之AWK程序介绍 4. Study-area之AWK 5. AWK学习笔记——酷勤 持 ...

  10. QC ALM 11创建域、项目和用户

    一旦HP-ALM安装,我们仅仅能继续创建域.项目和用户使用后的ALM工作.以下是步骤来创建项目.域和用户.       一.创建域 1.对于创建域,第一步是进入站点管理员页面.开展QC使用URL - ...