参考:https://blog.csdn.net/FAreStorm/article/details/49200383

没有技术含量但是难想难写,枚举情况图详见参考blog懒得画了

bzoj蜜汁TTTTTTTTTTTTTTTLE

upd:bzoj数据有问题,快读GG

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int N=1505;
int n,m,k,a[N][N],b[N][N],c[N][N],d[N][N],s[N][N],p[N][N],h[N][N],l[N][N],mxh[N],mxl[N],ans;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+read();
for(int i=k;i<=n;i++)
for(int j=k;j<=m;j++)
p[i][j]=s[i][j]-s[i-k][j]-s[i][j-k]+s[i-k][j-k],a[i][j]=max(p[i][j],max(a[i-1][j],a[i][j-1]));
for(int i=k;i<=n;i++)
for(int j=m-k+1;j>=1;j--)
b[i][j]=max(p[i][j+k-1],max(b[i-1][j],b[i][j+1]));
for(int i=n-k+1;i>=1;i--)
for(int j=k;j<=m;j++)
c[i][j]=max(p[i+k-1][j],max(c[i+1][j],c[i][j-1]));
for(int i=n-k+1;i>=1;i--)
for(int j=m-k+1;j>=1;j--)
d[i][j]=max(p[i+k-1][j+k-1],max(d[i+1][j],d[i][j+1]));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
mxh[i]=max(mxh[i],p[i][j]),mxl[j]=max(mxl[j],p[i][j]);
for(int i=1;i<=n;i++)
{
h[i][i+k-1]=mxh[i+k-1];
for(int j=i+k;j<=n;j++)
h[i][j]=max(h[i][j-1],mxh[j]);
}
for(int i=1;i<=m;i++)
{
l[i][i+k-1]=mxl[i+k-1];
for(int j=i+k;j<=m;j++)
l[i][j]=max(l[i][j-1],mxl[j]);
}
for(int i=k;i<=n-k+1;i++)
for(int j=k;j<=m-k+1;j++)
ans=max(ans,max(max(a[i][j]+c[i+1][j]+l[j+1][m],l[1][j]+b[i][j+1]+d[i+1][j+1]),max(a[i][j]+b[i][j+1]+h[i+1][n],h[1][i]+c[i+1][j]+d[i+1][j+1])));
for(int i=k;i<=n-k+1;i++)
for(int j=i+k-1;j<=n-k+1;j++)
ans=max(ans,h[1][i-1]+h[i][j]+h[j+1][n]);
for(int i=k;i<=m-k+1;i++)
for(int j=i+k-1;j<=m-k+1;j++)
ans=max(ans,l[1][i-1]+l[i][j]+l[j+1][n]);
printf("%d\n",ans);
return 0;
}

洛谷 P3625 [APIO2009]采油区域【枚举】的更多相关文章

  1. 洛谷P3625 - [APIO2009]采油区域

    Portal Description 给出一个\(n\times m(n,m\leq1500)\)的矩阵,从中选出\(3\)个互不相交的\(k\times k\)方阵,使得被选出的数的和最大. Sol ...

  2. [SOJ #686]抢救(2019-11-7考试)/[洛谷P3625][APIO2009]采油区域

    题目大意 有一个\(n\times m\)的网格,\((x,y)\)权值为\(a_{x,y}\),要求从中选取三个不相交的\(k\times k\)的正方形使得它们权值最大.\(n,m,k\leqsl ...

  3. bzoj1177&p3625 [APIO2009]采油区域p[大力讨论]

    我好菜菜啊. 给定矩形,从中选出三个边长K的正方形互不重叠,使得覆盖到的数总和最大. 想的时候往dp上钻去了..结果一开始想了一个错的dp,像这样 /************************* ...

  4. [P3625][APIO2009]采油区域 (前缀和)

    这道题用二维前缀和可以做 难度还不算高,细节需要注意 调试了很久…… 主要是细节太多了 #include<bits/stdc++.h> using namespace std; #defi ...

  5. 【题解】洛谷P3627 [APIO2009]抢掠计划(缩点+SPFA)

    洛谷P3627:https://www.luogu.org/problemnew/show/P3627 思路 由于有强连通分量 所以我们可以想到先把整个图缩点 缩点完之后再建一次图 把点权改为边权 并 ...

  6. BZOJ1178或洛谷3626 [APIO2009]会议中心

    BZOJ原题链接 洛谷原题链接 第一个问题是经典的最多不相交区间问题,用贪心即可解决. 主要问题是第二个,求最小字典序的方案. 我们可以尝试从\(1\to n\)扫一遍所有区间,按顺序对每一个不会使答 ...

  7. BZOJ1179或洛谷3672 [APIO2009]抢掠计划

    BZOJ原题链接 洛谷原题链接 在一个强连通分量里的\(ATM\)机显然都可被抢,所以先用\(tarjan\)找强连通分量并缩点,在缩点的后的\(DAG\)上跑最长路,然后扫一遍酒吧记录答案即可. # ...

  8. [APIO2009]采油区域

    题目描述 Siruseri 政府决定将石油资源丰富的 Navalur 省的土地拍卖给私人承包商以 建立油井.被拍卖的整块土地为一个矩形区域,被划分为 M×N 个小块. Siruseri 地质调查局有关 ...

  9. 洛谷 P3627 [APIO2009]抢掠计划

    这题一看就是缩点,但是缩完点怎么办呢?首先我们把所有的包含酒吧的缩点找出来,打上标记,然后建立一张新图, 每个缩点上的点权就是他所包含的所有点的点权和.但是建图的时候要注意,每一对缩点之间可能有多条边 ...

随机推荐

  1. SQL SERVER 2008破解加密存储过程(修正存储过程过长解密出来是空白的问题)

    SQLServer2005里使用with encryption选项创建的存储过程仍然和sqlserver2000里一样,都是使用XOR进行了的加密.和2000不一样的是,在2005的系统表syscom ...

  2. loj6171/bzoj4899 记忆的轮廊(期望dp+优化)

    题目: https://loj.ac/problem/6171 分析: 设dp[i][j]表示从第i个点出发(正确节点),还可以有j个存档点(在i点使用一个存档机会),走到终点n的期望步数 那么 a[ ...

  3. hybird app 用 xcode ios打包 ipa 测试包并且安装真机测试

    1.创建 ios 项目 1.用 cordova 创建一个 ios 项目 npm install -g cordova cordova create hello com.mydomain.hello H ...

  4. ubuntu重新启动网卡

    1.关闭接口:sudo ifconfig eth0 down 2.然后打开:sudo ifconfig eth0 up

  5. Servlet学习总结,为理解SpringMVC底层做准备

    Servlet 一句话概括 :处理web浏览器,其他HTTP客户端与服务器上数据库或其他应用交互的中间层 Servlet 生命周期 : 1.类加载, 2.实例化并调用init()方法初始化该 Serv ...

  6. nhibernate实体类主键ID赋值问题

    有个同事忽然来找我,说他遇到了一个问题,在调用nhibernate 进行update数据的时候报错,说是有数据行锁定. 看代码,没啥问题. 直接在PL/SQL developer里对数据库进行插入,也 ...

  7. 1分钟看完 jQuery UI

    jQuery UI简介 jQuery UI包含了许多维持状态的小部件(Widget),因此,它与典型的 jQuery 插件使用模式略有不同.所有的 jQuery UI 小部件(Widget)使用相同的 ...

  8. Struts2中ValueStack结构和总结

    [ValueStack和ActionContext的关系] 首先,从结构上来看ValueStack是ActionContext的一个组成部分,是对ActionContext功能的扩展.ActionCo ...

  9. redis与spring整合·

    单机版: 配置spring配置文件applicationContext.xml <?xml version="1.0" encoding="UTF-8"? ...

  10. VisualSVN Server的配置和使用

    VisualSVN Server的配置与使用 本版本为VisualSVN Server 2.7.3版本-不同的版本可能在设置有不同的差异,但都大同小异 1.1启动界面 安装好 VisualSVN Se ...