题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法。

析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合D是最后一列没有石子,如果某一行或某一列,

没有,那么就相当于减少一行或者一列。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <ctime>
#include <cstdlib>
#define debug puts("+++++")
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 500 + 5;
const LL mod = 1000007;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
inline int lcm(int a, int b){ return a * b / gcd(a, b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
LL C[maxn][maxn]; void init(){
for(int i = 0; i < maxn; ++i) C[i][i] = C[i][0] = 1;
for(int i = 1; i < maxn; ++i)
for(int j = 1; j <= i; ++j)
C[i][j] = (C[i-1][j] + C[i-1][j-1]) % mod;
} int main(){
init();
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
int k;
scanf("%d %d %d", &n, &m, &k);
int ans = 0;
for(int i = 0; i < 16; ++i){
bool ok = true;
int r = n, c = m;
if(i & 1){ ok = !ok; --r; }
if(i & 2){ ok = !ok; --r; }
if(i & 4){ ok = !ok; --c; }
if(i & 8){ ok = !ok; --c; }
if(ok) ans = (ans + C[r*c][k]) % mod;
else ans = (ans - C[r*c][k] + mod) % mod;
}
printf("Case %d: %d\n", kase, ans);
}
return 0;
}

UVa 11806 Cheerleaders (数论容斥原理)的更多相关文章

  1. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  2. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  3. UVA 11806 Cheerleaders (容斥原理

    1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...

  4. UVA - 11806 Cheerleaders (容斥原理)

    题意:在N*M个方格中放K个点,要求第一行,第一列,最后一行,最后一列必须放,问有多少种方法. 分析: 1.集合A,B,C,D分别代表第一行,第一列,最后一行,最后一列放. 则这四行必须放=随便放C[ ...

  5. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  6. UVA 11806 Cheerleaders (组合+容斥原理)

    自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...

  7. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

  8. 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders

    http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...

  9. UVa 11806 - Cheerleaders (组合计数+容斥原理)

    <训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...

随机推荐

  1. CodeForces - 750B New Year and North Pole

    http://codeforces.com/problemset/problem/750/B 模拟题 审题 在南极点 只能向北走(不能向 南 东 西) 所以也就不存在走过南极点的情况 北极点同样 然后 ...

  2. iOS 混合变换旋转 CGAffineTransform 的使用

    在ios 中, Core Graphics 提供了一系列的函数可以在一个变换的基础上做深层次的变换,如果做一个既要缩放又要旋转的变换,以下的方法比较实用. CGAffineTransformScale ...

  3. JFinal Weixin 1.5 发布,微信极速 SDK

    原文:http://www.oschina.net/news/67980/jfinal-weixin-1-5-released JFinal Weixin 1.5 大幅完善了对微信公众平台API的支持 ...

  4. [Lydsy1706月赛]大根堆

    4919: [Lydsy1706月赛]大根堆 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 358  Solved: 150[Submit][Stat ...

  5. 51nod 马拉松30 C(构二分图+状压dp)

    题意 分析 考虑一个图能被若干简单环覆盖,那么一定是每个点恰好一个出度,恰好一个出度 于是类似最小路径覆盖的处理,我们可以把每个点拆成2个点i和i',如果有一条边(i,j),那么将i和j'连起来 那么 ...

  6. Spring的JDBC示例

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/jdbc-framework-overview/spring-jdbc-example.html: ...

  7. Eclipse同时显示多个控制台项目的输出

    操作步骤: 1.运行项目1,运行项目2 2.在Exlipse中选择这两个的控制台进行切换

  8. 框架-Jquerychange事件数值计算

    //优惠率计算优惠价            $("body").on("change", "#Rate", function() {     ...

  9. Codefoces 436 B. Om Nom and Spiders

    纯属练习JAVA.... B. Om Nom and Spiders time limit per test 3 seconds memory limit per test 256 megabytes ...

  10. HBase单机环境搭建

    在搭建HBase单机环境之前,首先你要保证你已经搭建好Java环境: $ java -version java version "1.8.0_51" Java(TM) SE Run ...