挺水的但是我好久没写组合数了…

用这样一个思想,在1~m列中,考虑每一列上升几格,相当于把n-1个苹果放进m个篮子里,可以为空,问有几种方案。

这个就是一个组合数学经典问题了,考虑n个苹果放进m个篮子里,不可以为空的情况,用插板法,也就是把m-1个板子插进排成一排的果子里,分成m个不为空的区间,方案数为\( C_{n-1}^{m-1} \),现在考虑n个苹果放进m个篮子里,可以为空的情况,可以想成每个篮子里事先都放了一个苹果,那么就转为了上一个问题,方案数为\( C_{n+m-1}^{m-1} \)

回到这道题上,答案就是\( C_{n+m-2}^{m-1} \)

#include<iostream>
#include<iostream>
using namespace std;
const int mod=1e9+7,N=1000005;
long long n,m,inv[N],ans=1;
long long ksm(long long a,long long b)
{
long long r=1ll;
while(b)
{
if(b&1)
r=r*a%mod;
a=a*a%mod;
b>>=1;
}
return r;
}
int main()
{
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n+m-2;i++)
ans=ans*i%mod;
for(int i=1;i<=n-1;i++)
ans=ans*ksm(i,mod-2)%mod;
for(int i=1;i<=m-1;i++)
ans=ans*ksm(i,mod-2)%mod;
printf("%lld\n",ans);
return 0;
}

51nod 1119 机器人走方格 V2 【组合数学】的更多相关文章

  1. 51nod-1119 1119 机器人走方格 V2(组合数学+乘法逆元+快速幂)

    题目链接: 1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很 ...

  2. 51nod 1119 机器人走方格 V2

    1119 机器人走方格 V2  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少 ...

  3. 51nod 1118 机器人走方格 解题思路:动态规划 & 1119 机器人走方格 V2 解题思路:根据杨辉三角转化问题为组合数和求逆元问题

    51nod 1118 机器人走方格: 思路:这是一道简单题,很容易就看出用动态规划扫一遍就可以得到结果, 时间复杂度O(m*n).运算量1000*1000 = 1000000,很明显不会超时. 递推式 ...

  4. 1119 机器人走方格 V2(组合)

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于 ...

  5. 1119 机器人走方格 V2

    1119 机器人走方格 V2 基准时间限制:1 秒 空间限制:131072 KB M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mo ...

  6. 1119 机器人走方格 V2 (组合数学)

    M * N的方格,一个机器人从左上走到右下,只能向右或向下走.有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果.   Input 第1行,2个数M,N,中间用空格隔开 ...

  7. 51nod1119 机器人走方格 V2

    终于学到了求组合数的正确姿势 //C(n+m-2,m-1) #include<cstdio> #include<cstring> #include<cctype> ...

  8. 51nod 1120 机器人走方格V3

    1120 机器人走方格 V3  基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 N * N的方格,从左上到右下画一条线.一个机器人从左上走到右下,只 ...

  9. 51Nod——N1118 机器人走方格

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1118 基准时间限制:1 秒 空间限制:131072 KB 分值: 0  ...

随机推荐

  1. HDU 6333 莫队+组合数

    Problem B. Harvest of Apples Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K ...

  2. Best Time to Buy and Sell Stock(动态规划)

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  3. C语言取整方法总结

    C语言有下面几种取整方法: 1.   直接赋值给整数变量     int i = 3.5; 或 i = (int) 3.5; 这样的方法採用的是舍去小数部分. 2.整数除法运算符' / '取整 ' / ...

  4. Mysql不同存储引擎的表转换方法

    Mysql不同存储引擎的表转换方法 1.Alter table直接修改表的存储引擎,但是这样会导致大量的系统开销,Mysql为此要执行一个就表向新表的逐行复制.在此期间,转换操作可能会占用服务器的所有 ...

  5. 【python】super()

    转自: http://www.cnblogs.com/lovemo1314/archive/2011/05/03/2035005.html

  6. ASP.NET没有魔法——ASP.NET MVC Razor与View渲染 ASP.NET没有魔法——ASP.NET MVC界面美化及使用Bundle完成静态资源管理

    ASP.NET没有魔法——ASP.NET MVC Razor与View渲染   对于Web应用来说,它的界面是由浏览器根据HTML代码及其引用的相关资源进行渲染后展示给用户的结果,换句话说Web应用的 ...

  7. cocos2d-x CCSrollView 源代码,可循环的SrollView代码

    项目须要.写一个类似于iPhone上面时钟选择的可拉动式循环选择列表,通过集成CCScrollView并更改部分代码.实现了该功能. 假设想充分了解代码,请先阅读源码分析http://blog.csd ...

  8. Android5.0(lollipop)新特性介绍(一)

    今年6月的Google I/O大会上.Android L的初次见面我相信让会让非常多android粉丝有些小激动和小期待.当然作为开发人员的我来说,激动不言而喻,毕竟这是自08年以来改变最大的一个版本 ...

  9. 深度学习笔记之关于总结、展望、参考文献和Deep Learning学习资源(五)

    不多说,直接上干货! 十.总结与展望 1)Deep learning总结 深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法.换句话来说,深度学习算法自动的提取分类需要的低层 ...

  10. Coding Ninja 修炼笔记 (1)

    大家好啊~我又回来了. 这次主要是给大家带来一些提升 Coding 效率的建议. 效率都是一点一滴优化出来的,虽然每一条建议给你带来的提升可能都不大,但是积累起来,仍然是一股不可忽视的力量. 第一条 ...