Print Article

Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 6653    Accepted Submission(s): 2054

Problem Description
Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.
 
Input
There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.
 
Output
A single number, meaning the mininum cost to print the article.
 
Sample Input
5 5 5 9 5 7 5
 
Sample Output
230
 
Author
Xnozero
 
Source
 
Recommend
zhengfeng   |   We have carefully selected several similar problems for you:  3501 3504 3505 3498 3503 
此题是很基础的斜率优化DP
 题目描述: 给你一些字,你可以选择每次打印一个或者几个字,每次打印的费用是(ci+c(i+1)+c(i+2)+....)^2+m;
c[i]代表每个字的费用;
设dp[i]代表打印前i个字所需的最少费用,dp[i]=min(dp[j]+(sum[i]-sum[j])^2,dp[i]);
由于n的范围是500000,那么25*10^10,肯定会超时;
可以采用斜率优化:

我们首先假设在算 dp[i]时,k<j ,j点比k点优。

也就是

dp[j]+(sum[i]-sum[j])^2+M <= dp[k]+(sum[i]-sum[k])^2+M;

所谓j比k优就是DP方程里面的值更小

对上述方程进行整理很容易得到:

[(dp[j]+sum[j]*sum[j])-(dp[k]+sum[k]*sum[k])] / 2(sum[j]-sum[k]) <=sum[i].

注意整理中要考虑下正负,涉及到不等号的方向。

左边我们发现如果令:yj=dp[j]+sum[j]*sum[j]   xj=2*sum[j]

那么就变成了斜率表达式:(yj-yk)/(xj-xk) <= sum[i];

而且不等式右边是递增的。

所以我们可以看出以下两点:我们令g[k,j]=(yj-yk)/(xj-xk)

第一:如果上面的不等式成立,那就说j比k优,而且随着i的增大上述不等式一定是成立的,也就是对i以后算DP值时,j都比k优。那么k就是可以淘汰的。

如果不成立,那就说明k比j优,但是随着i的增加sum[i]增加,j始终会替换掉k.

第二:如果 k<j<i   而且 g[k,j]>g[j,i] 那么 j 是可以淘汰的。

假设  g[j,i]<sum[i]就是i比j优,那么j没有存在的价值

相反如果 g[j,i]>sum[i] 那么同样有 g[k,j]>sum[i]  那么 k比 j优 那么  j 是可以淘汰

所以这样相当于在维护一个下凸的图形,斜率在逐渐增大。

通过一个队列来维护。

初始化队列:head=0,tail=0;que[tail++]=0;表示tail处不存决策。

于是对于这题我们对于斜率优化做法可以总结如下:

1,用一个单调队列来维护解集。

2,假设队列中从头到尾已经有元素a b c。那么当d要入队的时候,我们维护队列的上凸性质,即如果g[d,c]<g[c,b],那么就将c点删除。直到找到g[d,x]>=g[x,y]为止,并将d点加入在该位置中。

3,求解时候,从队头开始,如果已有元素a b c,当i点要求解时,如果g[b,a]<sum[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i]=getDp(q[head]);

#include <iostream>
#include <cstdio>
#include <string.h>
#include <math.h>
#define maxn 500010
#define LL int
using namespace std; LL sum[maxn],dp[maxn];
int que[maxn];
int head,tail;
int n;
LL m;
int getdp(int i,int j)
{
return dp[j]+m+(sum[i]-sum[j])*(sum[i]-sum[j]);
} int getup(int j,int k) //yj-yk部分
{
return dp[j]+sum[j]*sum[j]-(dp[k]+sum[k]*sum[k]);
}
int getdown(int j,int k)
{
return *(sum[j]-sum[k]);
} void solve()
{
head=;
tail=;
que[tail++]=; //队列里存储的是决策 //tail处不存决策
for(int i=;i<=n;i++)
{
//从头开始找当前状态的最优决策,g[que[head+1],que[head]] < sum[i],说明que[head+1]比que[head]更优,删除que[head]
while(head+ < tail && getup(que[head+],que[head]) <= getdown(que[head+],que[head]) * sum[i] )
head++; //注意写成相乘,不然要考虑除数是否为负数
dp[i]=getdp(i,que[head]); //从尾往前,加入当前状态,如果g[i,que[tail]] < g[que[tail],que[tail-1]] ,可以排除que[tail]
/* while(head+1 <tail && getup(i,que[tail-1]) * getdown(que[tail-1],que[tail-2]) <= getup(que[tail-1],que[tail-2])*getdown(i,que[tail-1])))
{
tail--; //看到为什么RE了吗?笨蛋,括号打错了
}*/
while(head+<tail && getup(i,que[tail-])*getdown(que[tail-],que[tail-])<=getup(que[tail-],que[tail-])*getdown(i,que[tail-]))
tail--;
que[tail++]=i;
}
/*for(int i=1;i<=n;i++)
printf("%.0lf ",dp[i]);*/
printf("%d\n",dp[n]);
}
int main()
{ while(scanf("%d%d",&n,&m)==)
{
// init();
sum[]=;
for(int i=;i<=n;i++)
{
scanf("%d",&sum[i]);
sum[i]+=sum[i-];
}
//for(int i=1;i<=n;i++)
// printf("%lf ",sum[i]);
solve();
}
return ;
}

hdu 3507(DP+斜率优化)的更多相关文章

  1. HDU 3480 DP+斜率优化

    题意:给你n个数字,然后叫你从这些数字中选出m堆,使得每一堆的总和最小,一堆的总和就是这一堆中最大值减去最小值的平方,最后要使得所有堆加起来的总和最小. 思路:对这些数字排序之后,很容易想到DP解法, ...

  2. Print Article hdu 3507 一道斜率优化DP 表示是基础题,但对我来说很难

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  3. HDU 3480 DP 斜率优化 Division

    把n个数分成m段,每段的值为(MAX - MIN)2,求所能划分得到的最小值. 依然是先从小到大排个序,定义状态d(j, i)表示把前i个数划分成j段,所得到的最小值,则有状态转移方程: d(j, i ...

  4. HDU 3045 DP 斜率优化 Picnic Cows

    题意:将n个数分成若干组,每组数字的个数不少于t个,要把每组的数字减小到这组最小值,求所有数字减少的最小值. 先将这n个数从小到大排个序,可以想到一组里面的数一定是排序后相邻的. 设d(i)表示前i个 ...

  5. HDU 3507 [Print Article]DP斜率优化

    题目大意 给定一个长度为\(n(n \leqslant 500000)\)的数列,将其分割为连续的若干份,使得 $ \sum ((\sum_{i=j}^kC_i) +M) $ 最小.其中\(C_i\) ...

  6. hdu 2829 Lawrence(斜率优化DP)

    题目链接:hdu 2829 Lawrence 题意: 在一条直线型的铁路上,每个站点有各自的权重num[i],每一段铁路(边)的权重(题目上说是战略价值什么的好像)是能经过这条边的所有站点的乘积之和. ...

  7. 【BZOJ-4518】征途 DP + 斜率优化

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 230  Solved: 156[Submit][Status][ ...

  8. 【BZOJ-3437】小P的牧场 DP + 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 705  Solved: 404[Submit][Status][Discuss ...

  9. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

随机推荐

  1. HDU 4821 字符串hash

    题目大意: 希望找到连续的长为m*l的子串,使得m个l长的子串每一个都不一样,问能找到多少个这样的子串 简单的字符串hash,提前预处理出每一个长度为l的字符串的hash值 #include < ...

  2. [luoguP1866]滑动窗口(单调队列)

    传送门 可以搞2个单调队列. 然后,然后就没有然后了. # include <iostream> # include <cstdio> # include <cstrin ...

  3. poj 3678 XOR和OR和AND(简单2-sat问题)

    /* 题意:给你一些边,每条边有一个值和一个运算符XOR OR AND求是否存在一些点使得所有的边根据这些运算符 可以符合条件的权值. 建边方式参考:http://blog.csdn.net/shua ...

  4. 【设计模式】GOF设计模式趣解(23种设计模式)

    创建型模式                   1.FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说 ...

  5. hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]

    传送门 #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相 ...

  6. 【转载】ubuntu16.04 无线/Wifi 上网速度慢的解决方法

    原文链接:http://tieba.baidu.com/p/4737599703[侵删] 一直以为是域名解析的问题,可也觉得不像.今天在百度搜索“ubuntu16.04域名解析慢”的时候无意中看到了h ...

  7. [Bzoj3209]花神的数论题(数位dp)

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 1182[Submit][Status][Disc ...

  8. java 返回json数据

    Student st1 = new Student(1, "dg", 18, new Date());            Student st2 = new Student(2 ...

  9. Python第五讲

    一.冒泡算法 1.将两个变量的值互换 a1 = 123 a2 = 456 #要想将a1与a2的值进行位置互换需要借助一个中间变量(temp) temp = a1#将a1的值赋值给temp(temp=1 ...

  10. (void __user *)arg 中__user的作用

    __user宏简单告诉编译器(通过 noderef)不应该解除这个指针的引用(因为在当前地址空间中它是没有意义的). (void __user *)arg 指的是arg值是一个用户空间的地址,不能直接 ...