传送门

设\(f[i]\)为以\(i\)结尾的最长上升子序列。可以考虑建这样一张图,对于所有的\(i<j,f[j]=f[i+1]\)连边\((i,j)\),\(f[i]=1\)的话连边\((S,i)\),\(f[i]=max(f[j])\)的话连边\((j,T)\),然后就是删去若干个点使\(S,T\)不连通并且代价最小,那么拆点最小割就行了

然后是字典序的问题。我们把所有的点按\(c\)排个序然后看看这个点也就是新图中的这条边是否可以在最小割里。只要判断一下残量网络中是否存在\(u\)到\(u+n\)的路径就是了

然后删去这条边之后要重新算最大流,如果直接计算会T,这样的话我们可以退流,就是从\(T\)到\(u+n\)跑一次最大流再从\(u\)到\(S\)跑一次最大流就可以消除这条边的影响

//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 0x3f3f3f3f
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e4+5,M=1e6+5;
struct eg{int v,nx,w;}e[M];int head[N],tot=1;
inline void add(R int u,R int v,R int w){
e[++tot]={v,head[u],w},head[u]=tot;
e[++tot]={u,head[v],0},head[v]=tot;
}
struct node{
int c,id;
inline bool operator <(const node &b)const{return c<b.c;}
}c[N];
int dep[N],q[N],a[N],b[N],f[N],st[N];
int n,m,mx,S,T,h,t,top,flow;
bool bfs(int S,int T){
fp(i,0,(n<<1|1))dep[i]=-1;q[h=t=1]=S,dep[S]=0;
while(h<=t){
int u=q[h++];go(u)if(dep[v]<0&&e[i].w){
dep[v]=dep[u]+1,q[++t]=v;
if(v==T)return true;
}
}return false;
}
int dfs(int u,int T,int lim){
if(u==T||!lim)return lim;int flow=0,f;
go(u)if(dep[v]==dep[u]+1&&(f=dfs(v,T,min(lim,e[i].w)))){
flow+=f,lim-=f,e[i].w-=f,e[i^1].w+=f;
if(!lim)break;
}if(!flow)dep[u]=-1;return flow;
}
inline int dinic(int S,int T){int flow=0;while(bfs(S,T))flow+=dfs(S,T,inf);return flow;}
inline void cl(){memset(head,0,sizeof(head)),mx=0,tot=1;}
void solve(){
cl(),n=read();
fp(i,1,n)a[i]=read();
fp(i,1,n)b[i]=read();
fp(i,1,n)c[i].c=read(),c[i].id=i;
fp(i,1,n){
f[i]=1;
fp(j,1,i-1)if(a[j]<a[i])cmax(f[i],f[j]+1);
cmax(mx,f[i]);
}S=0,T=n<<1|1,top=0;
fp(i,1,n)add(i,i+n,b[i]);
fp(i,1,n)if(f[i]==1)add(S,i,inf);
fp(i,1,n)if(f[i]==mx)add(i+n,T,inf);
fp(i,1,n)fp(j,1,i-1)if(a[j]<a[i]&&f[i]==f[j]+1)add(j+n,i,inf);
flow=dinic(S,T);sort(c+1,c+1+n);
fp(i,1,n){
int u=c[i].id;if(bfs(u,u+n))continue;
dinic(T,u+n),dinic(u,S),st[++top]=u;
}sort(st+1,st+1+top);printf("%d %d\n",flow,top);
fp(i,1,top)printf("%d%c",st[i]," \n"[i==top]);
}
int main(){
// freopen("testdata.in","r",stdin);
int cas=read();
while(cas--)solve();
return 0;
}

P3308 [SDOI2014]LIS(最小割+退流)的更多相关文章

  1. 【BZOJ-3532】Lis 最小割 + 退流

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 704  Solved: 264[Submit][Status] ...

  2. BZOJ.3532.[SDOI2014]LIS(最小割ISAP 退流)

    BZOJ 洛谷 \(LIS\)..经典模型? 令\(f_i\)表示以\(i\)结尾的\(LIS\)长度. 如果\(f_i=1\),连边\((S,i,INF)\):如果\(f_i=\max\limits ...

  3. BZOJ3532 [Sdoi2014]Lis 【网络流退流】

    题目 给定序列A,序列中的每一项Ai有删除代价Bi和附加属性Ci.请删除若 干项,使得4的最长上升子序列长度减少至少1,且付出的代价之和最小,并输出方案. 如果有多种方案,请输出将删去项的附加属性排序 ...

  4. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  5. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  6. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  7. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  8. BZOJ1001:狼抓兔子(最小割最大流+vector模板)

    1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...

  9. HDU1565 方格取数(1) —— 状压DP or 插头DP(轮廓线更新) or 二分图点带权最大独立集(最小割最大流)

    题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory L ...

随机推荐

  1. Java加载配置文件类

    /** *  对应配置文件类, */ package com.up72.parkSys.ThirdParty; import java.io.IOException;import java.io.In ...

  2. 【转】C++函数的重载、覆盖和隐藏区别

    网上看到的关于C++函数的重载.覆盖和隐藏区别的回答,如下(其内容来源于C++面试宝典中一道题目): a.成员函数被重载的特征:(1)相同的范围(在同一个类中):(2)函数名字相同:(3)参数不同:( ...

  3. CSS浮动通俗讲解

    首先要知道,div是块级元素,在页面中独占一行,自上而下排列,也就是传说中的流.如下图: 可以看出,即使div1的宽度很小,页面中一行可以容下div1和div2,div2也不会排在div1后边,因为d ...

  4. Win7 丢失MSVCR110.DLL的解决办法

    1 从下面的网站下载dll文件 http://www.ddooo.com/softdown/27034.htm   2 把该文件放到C:\Windows\SysWOW64目录下(64位系统)或者C:\ ...

  5. 微信小程序之 SideBar(侧栏分类)

    项目目录: 模拟数据: utils / data.js function getSData() { var data = [ { "id": 1, "tree" ...

  6. C# 中用DES 对称Key,IV 加密,前端crypto.js 解密

    1.服务器端代码 #region ========加密======== /// <summary> /// 加密 /// </summary> /// <param na ...

  7. CASE函数 sql server——分组查询(方法和思想) ref和out 一般处理程序结合反射技术统一执行客户端请求 遍历查询结果集,update数据 HBuilder设置APP状态栏

    CASE函数   作用: 可以将查询结果集的某一列的字段值进行替换 它可以生成一个新列 相当于switch...case和 if..else 使用语法: case 表达式/字段 when 值 then ...

  8. What to do about Eclipse's “No repository found containing: …” error messages?

    As Mauro said: "you have to remove and re-add the Eclipse Project Update site, so that its meta ...

  9. 使用 C# 开发智能手机软件:推箱子(三)

    这是"使用 C# 开发智能手机软件:推箱子"系列文章的第三篇.在这篇文章中,介绍 Common/Block.cs 源程序文件.   1 namespace Skyiv.Ben.Pu ...

  10. 普通用户无法登陆SSH问题

    Linux正常情况下普通用户是可以登陆SSH的,除非系统管理员作了修改,如果没有修改的情况无法登陆可以尝试以下方法解决: 步骤/方法 1 查看 /etc/ssh/sshd_config文件 发现 ro ...