The 3n + 1 problem

Problem Description
Problems in Computer Science are often classified as belonging to a certain class of problems (e.g., NP, Unsolvable, Recursive). In this problem you will be analyzing a property of an algorithm whose classification is not known for all possible inputs.



Consider the following algorithm: 





    1.      input n



    2.      print n



    3.      if n = 1 then STOP



    4.           if n is odd then n <- 3n + 1



    5.           else n <- n / 2



    6.      GOTO 2





Given the input 22, the following sequence of numbers will be printed 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1 



It is conjectured that the algorithm above will terminate (when a 1 is printed) for any integral input value. Despite the simplicity of the algorithm, it is unknown whether this conjecture is true. It has been verified, however, for all integers n such that
0 < n < 1,000,000 (and, in fact, for many more numbers than this.) 



Given an input n, it is possible to determine the number of numbers printed (including the 1). For a given n this is called the cycle-length of n. In the example above, the cycle length of 22 is 16. 



For any two numbers i and j you are to determine the maximum cycle length over all numbers between i and j. 
 
Input
The input will consist of a series of pairs of integers i and j, one pair of integers per line. All integers will be less than 1,000,000 and greater than 0. 



You should process all pairs of integers and for each pair determine the maximum cycle length over all integers between and including i and j. 



You can assume that no opperation overflows a 32-bit integer.
 
Output
For each pair of input integers i and j you should output i, j, and the maximum cycle length for integers between and including i and j. These three numbers should be separated by at least one space with all three numbers on one line and with one line of output
for each line of input. The integers i and j must appear in the output in the same order in which they appeared in the input and should be followed by the maximum cycle length (on the same line). 
 
Sample Input
1 10
100 200
201 210
900 1000
 
Sample Output
1 10 20
100 200 125
201 210 89
900 1000 174
 
让你怎么做你就怎么做。

预计数据弱,不然直接做应该会超时(本来想写优化来着,没想到这题数据这么弱······)。

代码例如以下:

#include<cstdio>
int main(){
int n,m;
while(scanf("%d%d",&n,&m)==2){
int maxn=n>m?n:m;//没说n和m的大小,坑啊! int minx=n>m?m:n;
int maxx=0;
for(int i=minx;i<=maxn;i++){//总感觉这样会超时。看来数据不强啊
int x=i,sum=1;
while(x!=1){
if(x%2==0) x/=2;
else x=3*x+1;
sum++;
}
if(sum>maxx) maxx=sum;
}
printf("%d %d %d\n",n,m,maxx);
}
return 0;
}


HDU 1032.The 3n + 1 problem【注意细节】【预计数据不强】【8月21】的更多相关文章

  1. HDU 1032 The 3n + 1 problem (这个题必须写博客)

    The 3n + 1 problem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  2. 题解报告:hdu 1032 The 3n + 1 problem(克拉兹问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1032 Problem Description Problems in Computer Science ...

  3. HDU 1032 The 3n + 1 problem

    还以为要递归推一推的 结果暴力就过了 要注意 i,j 大小 #include <iostream> using namespace std; int a,b; long long cnt, ...

  4. 杭电OJ——1032 The 3n + 1 problem

    The 3n + 1 problem Problem Description Problems in Computer Science are often classified as belongin ...

  5. HDU 1031.Design T-Shirt【结构体二次排序】【8月21】

    Design T-Shirt Problem Description Soon after he decided to design a T-shirt for our Algorithm Board ...

  6. 烟大 Contest1024 - 《挑战编程》第一章:入门 Problem A: The 3n + 1 problem(水题)

    Problem A: The 3n + 1 problem Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 14  Solved: 6[Submit][St ...

  7. UVa 100 - The 3n + 1 problem(函数循环长度)

    题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...

  8. The 3n + 1 problem 分类: POJ 2015-06-12 17:50 11人阅读 评论(0) 收藏

    The 3n + 1 problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53927   Accepted: 17 ...

  9. uva----(100)The 3n + 1 problem

     The 3n + 1 problem  Background Problems in Computer Science are often classified as belonging to a ...

随机推荐

  1. wlan

    一.概述 CSMA/CD    --->以太网介质 CSMA/CA------->无线介质 IEEE----->802.11   a  b  g  e  f   h  i  j 分类 ...

  2. Leetcode 331.验证二叉树的前序序列化

    验证二叉树的前序序列化 序列化二叉树的一种方法是使用前序遍历.当我们遇到一个非空节点时,我们可以记录下这个节点的值.如果它是一个空节点,我们可以使用一个标记值记录,例如#. 例如,上面的二叉树可以被序 ...

  3. numpy hstack()

    numpy.hstack(tup)[source] Stack arrays in sequence horizontally (column wise). Take a sequence of ar ...

  4. 学习iis工作原理

    文章:IIs工作原理 文章:Asp.Net 构架(Http Handler 介绍) - Part.2

  5. zoj2112 主席树动态第k大 (主席树&&树状数组)

    Dynamic Rankings Time Limit: 10 Seconds      Memory Limit: 32768 KB The Company Dynamic Rankings has ...

  6. 九度oj 题目1447:最短路

    题目描述: 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线 ...

  7. vue项目实战, webpack 配置流程记录

    vue项目实战记录,地址在这 购物车单界面 npm install npm run dev 跑起来可以看到界面效果 这里简单记录一下webpack的编译流程 入口 package.json " ...

  8. LA 2218 半平面交

     题目大意:n名选手参加铁人三项赛,比赛按照选手在三个赛段中所用的总时间排定名次.已知每名选手在三个项目中的速度Ui.Vi.Wi.问对于选手i,能否通过适当的安排三个赛段的长度(但每个赛段的长度都不能 ...

  9. 【HDOJ5978】To begin or not to begin(概率)

    题意:有k个黑球和1个红球,两个轮流抽,抽到红球算赢,问先手赢的概率大还是后手大还是相等 k<=1e5 思路:手算前几项概率 大胆猜想 #include<cstdio> #inclu ...

  10. Redis集群模式配置

    redis集群部署安装: https://blog.csdn.net/huwh_/article/details/79242625 https://www.cnblogs.com/mafly/p/re ...