\(\\\)

\(Description\)


一张\(N\times M\)的网格,已知起点和终点,其中有一些地方是落脚点,有一些地方是空地,还有一些地方是坏点。

现在要从起点到终点,每次移动走日字\((\)横一纵二或横二纵一\()\),其中只能经过起点、终点、落脚点。

现在可以开发任意个数的空地变为落脚点,问找到合法路径最少需要开发多少个空地,在满足第一个条件下最少移动多少步,在满足前两个条件下有多少条不同的路径。

  • \(N,M\in [1,30]\)

\(\\\)

\(Solution\)


被上一个题干蒙直接\(NC\)......我还说Silver咋比Gold还难

这题.......仔细读题之后错觉是\(Gold\)那题再加上一层限制的最短路,后来发现不是.......

仔细读题,注意这次的方案数不再是放置落脚点的方案,而是路径数。

那么我们就不必考虑选择不同原有落脚点导致方案同构的尴尬情况了,直接将每一个点向一步可以到达的点建边,如果是从空地向外建边代价为\(1\),其他为\(0\)即可。

最短路计数时有双层限制,注意讨论更新的情况。

\(\\\)

\(Code\)


#include<cmath>
#include<queue>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 50
#define M 60010
#define R register
#define gc getchar
#define inf 9000000000000000ll
using namespace std;
typedef long long ll; inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} bool vis[N*N]; const int dx[8]={1,1,-1,-1,2,2,-2,-2}; const int dy[8]={2,-2,2,-2,1,-1,1,-1}; ll ts[N*N],stp[N*N],dis[N*N];
int n,m,s,t,tot,cnt,num[N][N],mp[N][N],hd[N*N]; struct edge{int w,to,nxt;}e[M<<1]; inline void add(int u,int v,int w){
e[++tot].to=v; e[tot].w=w;
e[tot].nxt=hd[u]; hd[u]=tot;
} inline void make(int ux,int uy){
for(R int i=0,nx,ny;i<8;++i){
nx=ux+dx[i]; ny=uy+dy[i];
if(nx<1||nx>n||ny<1||ny>m) continue;
add(num[ux][uy],num[nx][ny],mp[ux][uy]==0);
}
} queue<int> q; inline void SPFA(){
memset(vis,0,sizeof(vis));
memset(stp,0x3f,sizeof(stp));
for(R int i=1;i<=cnt;++i) dis[i]=inf;
q.push(s); dis[s]=0;
ts[s]=1ll; stp[s]=0;
while(!q.empty()){
int u=q.front();
q.pop(); vis[u]=0;
for(R int i=hd[u],v;i;i=e[i].nxt)
if(dis[v=e[i].to]>dis[u]+e[i].w){
dis[v]=dis[u]+e[i].w;
stp[v]=stp[u]+1; ts[v]=ts[u];
if(!vis[v]) vis[v]=1,q.push(v);
}
else if(dis[v]==dis[u]+e[i].w&&stp[v]>stp[u]+1){
stp[v]=stp[u]+1; ts[v]=ts[u];
if(!vis[v]) vis[v]=1,q.push(v);
}
else if(dis[v]==dis[u]+e[i].w&&stp[v]==stp[u]+1) ts[v]+=ts[u];
}
} int main(){
n=rd(); m=rd();
for(R int i=1;i<=n;++i)
for(R int j=1;j<=m;++j){
mp[i][j]=rd();
num[i][j]=++cnt;
if(mp[i][j]==3) s=cnt;
if(mp[i][j]==4) t=cnt;
}
for(R int i=1;i<=n;++i)
for(R int j=1;j<=m;++j)
if(mp[i][j]!=2) make(i,j);
SPFA();
if(dis[t]<inf) printf("%lld\n%lld\n%lld\n",dis[t],stp[t],ts[t]);
else puts("-1");
return 0;
}

[ USACO 2007 FEB ] Lilypad Pond (Silver)的更多相关文章

  1. [ USACO 2007 FEB ] Lilypad Pond (Gold)

    \(\\\) \(Description\) 一张\(N\times M\)的网格,已知起点和终点,其中有一些地方是落脚点,有一些地方是空地,还有一些地方是坏点. 现在要从起点到终点,每次移动走日字\ ...

  2. 1632: [Usaco2007 Feb]Lilypad Pond

    1632: [Usaco2007 Feb]Lilypad Pond Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 404  Solved: 118[Sub ...

  3. BZOJ 1632: [Usaco2007 Feb]Lilypad Pond

    题目 1632: [Usaco2007 Feb]Lilypad Pond Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 390  Solved: 109[ ...

  4. 「BZOJ 1698」「USACO 2007 Feb」Lilypad Pond 荷叶池塘「最短路」

    题解 从一个点P可以跳到另一个点Q,如果Q是水这条边就是1,如果Q是荷叶这条边权值是0.可以跑最短路并计数 问题是边权为0的最短路计数没有意义(只是荷叶的跳法不同),所以我们两个能通过荷叶间接连通的点 ...

  5. bzoj1632 [Usaco2007 Feb]Lilypad Pond

    Description Farmer John 建造了一个美丽的池塘,用于让他的牛们审美和锻炼.这个长方形的池子被分割成了 M 行和 N 列( 1 ≤ M ≤ 30 ; 1 ≤ N ≤ 30 ) 正方 ...

  6. BZOJ1632: [Usaco2007 Feb]Lilypad Pond SPFA+最短路计数

    Description 为了让奶牛们娱乐和锻炼,农夫约翰建造了一个美丽的池塘.这个长方形的池子被分成了M行N列个方格(1≤M,N≤30).一些格子是坚固得令人惊讶的莲花,还有一些格子是岩石,其余的只是 ...

  7. 【BZOJ】1632: [Usaco2007 Feb]Lilypad Pond(bfs)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1632 我简直是个sb... ... bfs都不会写.. 算方案还用2个bfs! 都不会整合到一个! ...

  8. BZOJ 1632 [Usaco2007 Feb]Lilypad Pond:spfa【同时更新:经过边的数量最小】【路径数量】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1632 题意: 有一个n*m的池塘.0代表水,1代表荷花,2代表岩石,3代表起点,4代表终点 ...

  9. BZOJ1698: [Usaco2007 Feb]Lilypad Pond 荷叶池塘

    一傻逼题调了两天.. n<=30 * m<=30的地图,0表示可以放平台,1表示本来有平台,2表示不能走,3起点4终点,走路方式为象棋的日字,求:从起点走到终点,至少要放多少平台,以及放平 ...

随机推荐

  1. 洛谷 P3984 高兴的津津

    P3984 高兴的津津 题目描述 津津上高中了.她在自己的妈妈的魔鬼训练下,成为了一个神犇,每次参加一次OI比赛必拿Au虐全场.每次她拿到一个Au后就很高兴.假设津津不会因为其它事高兴,并且她的高兴会 ...

  2. Analyzing Storage Performance using the Windows Performance Analysis ToolKit (WPT)

    https://blogs.technet.microsoft.com/robertsmith/2012/02/07/analyzing-storage-performance-using-the-w ...

  3. openstack setup demo 前言

    我们搭建一套三节点的openstanck集群.一个controller节点,两个compute节点.操作系统采用Centos7,操作系统版本信息如下. [root@controller01 ~]# c ...

  4. 旧瓶新酒之ngx_lua & fail2ban实现主动诱捕

    服务器承担着业务运行及数据存储的重要作用,因此极易成为攻击者的首要目标.如何对业务服务器的安全进行防护,及时找出针对系统的攻击,并阻断攻击,最大程度地降低主机系统安全的风险程度,是企业安全从业人员面临 ...

  5. Django学习系列之Form表单结合ajax

      Forms结合ajax Forms的验证流程: 定义用户输入规则的类,字段的值必须等于html中name属性的值(pwd= forms.CharField(required=True)=<i ...

  6. Android 实现形态各异的双向側滑菜单 自己定义控件来袭

    转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/39670935.本文出自:[张鸿洋的博客] 1.概述 关于自己定义控件側滑已经写了 ...

  7. Akka并发编程——第五节:Actor模型(四)

    本节主要内容: 1. 停止Actor 1. 停止Actor (1)通过ActorSystem.shutdown方法停止全部 Actor的执行 /* *停止Actor:ActorSystem.shutd ...

  8. 工作总结 default Console.WriteLine(default(Guid));

    泛型代码中的默认关键字 在泛型类和泛型方法中产生的一个问题是,在预先未知以下情况时,如何将默认值分配给参数化类型 T: T 是引用类型还是值类型. 如果 T 为值类型,则它是数值还是结构. 给定参数化 ...

  9. 解决burp suite 使用chrome訪问https失真的问题

    用burp suite 訪问https网页 尤其使用chrome(有时候firefox也会) 会出现js或者css载入不出来的情况 这样的时候,导出burp suite的证书,保存为cer格式 然后进 ...

  10. 操作系统学习笔记:CPU调度

    CPU调度的目的在于提高CPU利用率,不让CPU闲着.CPU是宝贵的资源,如果有一个进程,本来在CPU中运行,忽然因为要使用IO资源,于是转而请求IO,这边CPU挂起,造成就绪队列中的其他进程等待,这 ...