[ USACO 2007 FEB ] Lilypad Pond (Silver)
\(\\\)
\(Description\)
一张\(N\times M\)的网格,已知起点和终点,其中有一些地方是落脚点,有一些地方是空地,还有一些地方是坏点。
现在要从起点到终点,每次移动走日字\((\)横一纵二或横二纵一\()\),其中只能经过起点、终点、落脚点。
现在可以开发任意个数的空地变为落脚点,问找到合法路径最少需要开发多少个空地,在满足第一个条件下最少移动多少步,在满足前两个条件下有多少条不同的路径。
- \(N,M\in [1,30]\)
\(\\\)
\(Solution\)
被上一个题干蒙直接\(NC\)......我还说Silver咋比Gold还难
这题.......仔细读题之后错觉是\(Gold\)那题再加上一层限制的最短路,后来发现不是.......
仔细读题,注意这次的方案数不再是放置落脚点的方案,而是路径数。
那么我们就不必考虑选择不同原有落脚点导致方案同构的尴尬情况了,直接将每一个点向一步可以到达的点建边,如果是从空地向外建边代价为\(1\),其他为\(0\)即可。
最短路计数时有双层限制,注意讨论更新的情况。
\(\\\)
\(Code\)
#include<cmath>
#include<queue>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 50
#define M 60010
#define R register
#define gc getchar
#define inf 9000000000000000ll
using namespace std;
typedef long long ll;
inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
}
bool vis[N*N];
const int dx[8]={1,1,-1,-1,2,2,-2,-2};
const int dy[8]={2,-2,2,-2,1,-1,1,-1};
ll ts[N*N],stp[N*N],dis[N*N];
int n,m,s,t,tot,cnt,num[N][N],mp[N][N],hd[N*N];
struct edge{int w,to,nxt;}e[M<<1];
inline void add(int u,int v,int w){
e[++tot].to=v; e[tot].w=w;
e[tot].nxt=hd[u]; hd[u]=tot;
}
inline void make(int ux,int uy){
for(R int i=0,nx,ny;i<8;++i){
nx=ux+dx[i]; ny=uy+dy[i];
if(nx<1||nx>n||ny<1||ny>m) continue;
add(num[ux][uy],num[nx][ny],mp[ux][uy]==0);
}
}
queue<int> q;
inline void SPFA(){
memset(vis,0,sizeof(vis));
memset(stp,0x3f,sizeof(stp));
for(R int i=1;i<=cnt;++i) dis[i]=inf;
q.push(s); dis[s]=0;
ts[s]=1ll; stp[s]=0;
while(!q.empty()){
int u=q.front();
q.pop(); vis[u]=0;
for(R int i=hd[u],v;i;i=e[i].nxt)
if(dis[v=e[i].to]>dis[u]+e[i].w){
dis[v]=dis[u]+e[i].w;
stp[v]=stp[u]+1; ts[v]=ts[u];
if(!vis[v]) vis[v]=1,q.push(v);
}
else if(dis[v]==dis[u]+e[i].w&&stp[v]>stp[u]+1){
stp[v]=stp[u]+1; ts[v]=ts[u];
if(!vis[v]) vis[v]=1,q.push(v);
}
else if(dis[v]==dis[u]+e[i].w&&stp[v]==stp[u]+1) ts[v]+=ts[u];
}
}
int main(){
n=rd(); m=rd();
for(R int i=1;i<=n;++i)
for(R int j=1;j<=m;++j){
mp[i][j]=rd();
num[i][j]=++cnt;
if(mp[i][j]==3) s=cnt;
if(mp[i][j]==4) t=cnt;
}
for(R int i=1;i<=n;++i)
for(R int j=1;j<=m;++j)
if(mp[i][j]!=2) make(i,j);
SPFA();
if(dis[t]<inf) printf("%lld\n%lld\n%lld\n",dis[t],stp[t],ts[t]);
else puts("-1");
return 0;
}
[ USACO 2007 FEB ] Lilypad Pond (Silver)的更多相关文章
- [ USACO 2007 FEB ] Lilypad Pond (Gold)
\(\\\) \(Description\) 一张\(N\times M\)的网格,已知起点和终点,其中有一些地方是落脚点,有一些地方是空地,还有一些地方是坏点. 现在要从起点到终点,每次移动走日字\ ...
- 1632: [Usaco2007 Feb]Lilypad Pond
1632: [Usaco2007 Feb]Lilypad Pond Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 404 Solved: 118[Sub ...
- BZOJ 1632: [Usaco2007 Feb]Lilypad Pond
题目 1632: [Usaco2007 Feb]Lilypad Pond Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 390 Solved: 109[ ...
- 「BZOJ 1698」「USACO 2007 Feb」Lilypad Pond 荷叶池塘「最短路」
题解 从一个点P可以跳到另一个点Q,如果Q是水这条边就是1,如果Q是荷叶这条边权值是0.可以跑最短路并计数 问题是边权为0的最短路计数没有意义(只是荷叶的跳法不同),所以我们两个能通过荷叶间接连通的点 ...
- bzoj1632 [Usaco2007 Feb]Lilypad Pond
Description Farmer John 建造了一个美丽的池塘,用于让他的牛们审美和锻炼.这个长方形的池子被分割成了 M 行和 N 列( 1 ≤ M ≤ 30 ; 1 ≤ N ≤ 30 ) 正方 ...
- BZOJ1632: [Usaco2007 Feb]Lilypad Pond SPFA+最短路计数
Description 为了让奶牛们娱乐和锻炼,农夫约翰建造了一个美丽的池塘.这个长方形的池子被分成了M行N列个方格(1≤M,N≤30).一些格子是坚固得令人惊讶的莲花,还有一些格子是岩石,其余的只是 ...
- 【BZOJ】1632: [Usaco2007 Feb]Lilypad Pond(bfs)
http://www.lydsy.com/JudgeOnline/problem.php?id=1632 我简直是个sb... ... bfs都不会写.. 算方案还用2个bfs! 都不会整合到一个! ...
- BZOJ 1632 [Usaco2007 Feb]Lilypad Pond:spfa【同时更新:经过边的数量最小】【路径数量】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1632 题意: 有一个n*m的池塘.0代表水,1代表荷花,2代表岩石,3代表起点,4代表终点 ...
- BZOJ1698: [Usaco2007 Feb]Lilypad Pond 荷叶池塘
一傻逼题调了两天.. n<=30 * m<=30的地图,0表示可以放平台,1表示本来有平台,2表示不能走,3起点4终点,走路方式为象棋的日字,求:从起点走到终点,至少要放多少平台,以及放平 ...
随机推荐
- springMVC多数据源使用 跨库跨连接
原文:http://blog.itpub.net/9399028/viewspace-2106641/ http://blog.csdn.net/a973893384/article/details/ ...
- sh变更权限
添加权限 假设您创建一个 “Hello world” 的 shell 脚本.当您第一次创建脚本时,它通常是不可执行的.使用 chmod 命令和 +x 选项添加执行权限,如清单 5 所示. 清单 5. ...
- VC++ 提示无法打开包括文件“iostream.h”怎么办
把 //#include "iostream.h" 改成 #include<iostream> using namespace std; ...
- react 项目实战(九)登录与身份认证
SPA的鉴权方式和传统的web应用不同:由于页面的渲染不再依赖服务端,与服务端的交互都通过接口来完成,而REASTful风格的接口提倡无状态(state less),通常不使用cookie和sessi ...
- Deferred Rendering(二)G-Buffer的组织
先来看一张网上广为流传的<杀戮地带2>典型的Deferred Shading的G-Buffer组织: 这里补充解释下几个点: 不存Position,而由depth和屏幕像素坐标反推出来.參 ...
- HTTP权威指南阅读记录 - 第一章
最近终于开始看<HTTP权威指南>了,第一章主要是简介一些基本的概念.下面列出一些常用,但还不是很了解的简单概念. 一.常见概念: 1.媒体类型 因特网上有数千种不同的数据类型,HTTP仔 ...
- mac系统下的常用命令
这是我日常在mac下记录的一些常用终端命令: 1 java 2 javac 3 exit 4 /Users/lianxumac/Desktop/apktool1.5.2/反编译 ; exit; 5 / ...
- BZOJ_1493_[NOI2007]项链工厂_Splay
BZOJ_1493_[NOI2007]项链工厂_Splay Description T公司是一家专门生产彩色珠子项链的公司,其生产的项链设计新颖.款式多样.价格适中,广受青年人的喜爱. 最近T公司打算 ...
- 如何精通javascript
http://stackoverflow.com/questions/2628672/what-should-every-javascript-programmer-know Not jQuery. ...
- 使用IntelliJ IDEA 配置JDK(入门)
一.JDK下载 首先要下载java开发工具包JDK,下载地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html 点击 ...