Python机器学习--回归
线性回归
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 30 19:55:37 2017 @author: Administrator
""" '''
背景:与房价密切相关的除了单位的房价,还有房屋的尺寸。我们可以根
据已知的房屋成交价和房屋的尺寸进行线性回归,继而可以对已知房屋尺
寸,而未知房屋成交价格的实例进行成交价格的预测
''' import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model # 读取数据集
datasets_X = []
datasets_Y = []
fpath='F:\\RANJIEWEN\\MachineLearning\\Python机器学习实战_mooc\\data\\回归\\'
fr = open(fpath+'prices.txt','r')
lines = fr.readlines()
for line in lines:
items = line.strip().split(',')
datasets_X.append(int(items[0]))
datasets_Y.append(int(items[1])) length = len(datasets_X)
datasets_X = np.array(datasets_X).reshape([length,1])
datasets_Y = np.array(datasets_Y) minX = min(datasets_X)
maxX = max(datasets_X)
X = np.arange(minX,maxX).reshape([-1,1]) linear = linear_model.LinearRegression()
linear.fit(datasets_X, datasets_Y) # 图像中显示
plt.scatter(datasets_X, datasets_Y, color = 'red')
plt.plot(X, linear.predict(X), color = 'blue')
plt.xlabel('Area')
plt.ylabel('Price')
plt.show()
多项式回归
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 30 20:24:09 2017 @author: Administrator
""" '''
我们在前面已经根据已知的房屋成交价和房屋的尺寸进行了线
性回归,继而可以对已知房屋尺寸,而未知房屋成交价格的实例进行了成
交价格的预测,但是在实际的应用中这样的拟合往往不够好,因此我们在
此对该数据集进行多项式回归。 ''' import matplotlib.pyplot as plt
import numpy as np
from sklearn import linear_model
from sklearn.preprocessing import PolynomialFeatures # 读取数据集
datasets_X = []
datasets_Y = [] fpath='F:\\RANJIEWEN\\MachineLearning\\Python机器学习实战_mooc\\data\\回归\\'
fr = open(fpath+'prices.txt','r')
lines = fr.readlines()
for line in lines:
items = line.strip().split(',')
datasets_X.append(int(items[0]))
datasets_Y.append(int(items[1])) length = len(datasets_X)
datasets_X = np.array(datasets_X).reshape([length,1])
datasets_Y = np.array(datasets_Y) minX = min(datasets_X)
maxX = max(datasets_X)
X = np.arange(minX,maxX).reshape([-1,1]) poly_reg = PolynomialFeatures(degree = 2)
X_poly = poly_reg.fit_transform(datasets_X)
lin_reg_2 = linear_model.LinearRegression()
lin_reg_2.fit(X_poly, datasets_Y) # 图像中显示
plt.scatter(datasets_X, datasets_Y, color = 'red')
plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'blue')
plt.xlabel('Area')
plt.ylabel('Price')
plt.show()
岭回归
- 还有就是容易过拟合,才出现了岭回归,L2正则项
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 30 20:33:00 2017 @author: Administrator
""" '''
数据介绍:
数据为某路口的交通流量监测数据,记录全年小时级别的车流量。
实验目的:
根据已有的数据创建多项式特征,使用岭回归模型代替一般的线性模型,对
车流量的信息进行多项式回归。
''' import numpy as np from sklearn.linear_model import Ridge
from sklearn import cross_validation
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures fpath='F:\RANJIEWEN\MachineLearning\Python机器学习实战_mooc\data\回归\岭回归.csv' data=pd.read_csv(fpath,encoding='gbk',parse_dates=[0],index_col=0) #data.sort_index(0,ascending=True,inplace=True) X=data.iloc[:,:4] ##语法
y=data.iloc[:,4]
poly=PolynomialFeatures(6) #设置多项式的最高次数
X=poly.fit_transform(X) train_set_X,test_set_X,train_set_y,test_set_y= \
cross_validation.train_test_split(X,y,test_size=0.3,random_state=0) #设置测试集的比例,random_state随机数种子 clf=Ridge(alpha=1.0,fit_intercept=True)
clf.fit(train_set_X,train_set_y)
clf.score(test_set_X,test_set_y) #plot
start=200
end=300
y_pre=clf.predict(X)
time=np.arange(start,end)
plt.plot(time,y[start:end],'b',label='real')
plt.plot(time,y_pre[start:end],'r',label='predict')
plt.legend(loc='upper left')
plt.show()
- Lasso回归,添加L1正则项,具有稀疏解
Python机器学习--回归的更多相关文章
- 吴裕雄 python 机器学习——回归决策树模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_s ...
- python机器学习《回归 一》
唠嗑唠嗑 依旧是每一次随便讲两句生活小事.表示最近有点懒,可能是快要考试的原因,外加这两天都有笔试和各种面试,让心情变得没那么安静的敲代码,没那么安静的学习算法.搞得第一次和技术总监聊天的时候都不太懂 ...
- 常用python机器学习库总结
开始学习Python,之后渐渐成为我学习工作中的第一辅助脚本语言,虽然开发语言是Java,但平时的很多文本数据处理任务都交给了Python.这些年来,接触和使用了很多Python工具包,特别是在文本处 ...
- [Python] 机器学习库资料汇总
声明:以下内容转载自平行宇宙. Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy.其中Numpy是一个用python实现的科学计算包.包括: 一个强大的N维数组对象Array: ...
- 2016年GitHub排名前20的Python机器学习开源项目(转)
当今时代,开源是创新和技术快速发展的核心.本文来自 KDnuggets 的年度盘点,介绍了 2016 年排名前 20 的 Python 机器学习开源项目,在介绍的同时也会做一些有趣的分析以及谈一谈它们 ...
- [resource]Python机器学习库
reference: http://qxde01.blog.163.com/blog/static/67335744201368101922991/ Python在科学计算领域,有两个重要的扩展模块: ...
- python机器学习实战(四)
python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7364317.html 前言 这篇notebook是关于机器学 ...
- python机器学习工具包
1. scikit-learn: Machine Learning in Python scikit-learn是一个基于NumPy, SciPy, Matplotlib的开源机器学习工具包,主要涵盖 ...
- Python机器学习:5.6 使用核PCA进行非线性映射
许多机器学习算法都有一个假设:输入数据要是线性可分的.感知机算法必须针对完全线性可分数据才能收敛.考虑到噪音,Adalien.逻辑斯蒂回归和SVM并不会要求数据完全线性可分. 但是现实生活中有大量的非 ...
随机推荐
- 无法连接Elasticsearch解决方案
前言 最近还是在弄ELK,并且在测试Logstash从kafka消费日志(最后输出到Elasticsearch). 测试完毕后,在kibana中,并没有发现Elasticsearch中的数据. 后来装 ...
- 【cookie】【浏览器】各大浏览器对cookie的限制
- Python爬虫-字体反爬-猫眼国内票房榜
偶然间知道到了字体反爬这个东西, 所以决定了解一下. 目标: https://maoyan.com/board/1 问题: 类似下图中的票房数字无法获取, 直接复制粘贴的话会显示 □ 等无法识别的字 ...
- 03006_Servlet简介
1.什么是Servlet (1)Servlet 运行在服务端的Java小程序,是sun公司提供一套规范(接口),用来处理客户端请求.响应给浏览器的动态资源: (2)Servlet的实质就是java代码 ...
- charles-修改发送的接口数据测试页面样式
一.痛点: 1. 界面上数据准确性无法比对 2. 界面上几乎没有可测试数据 3. 消息条数超过99时的显示逻辑验证(难道真的要造100条新的未读消息?) 4. 更换界面图片时必须找相关接 ...
- jsp jstl标签库 el表达式
一.JSTL标签是什么? 提供了对国际化(I18N)的支持,它可以根据发出请求的客户端地域的不同来显示不同的语言. 同时还提供了格式化数据和日期的方法.实现这些功能需要I18N格式标签库(I18N-c ...
- leetcode 319 灯泡问题
例子:1-9 1的因子1 2 1,2 3 1,,3 4 1,2,4 5 1,5 6 1,2,3,6 7 1,7 8 ...
- bzoj2120 数颜色 莫队 带修改
[bzoj2120]数颜色 Description 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔 ...
- 1109 NOIP 模拟考试
NOIP2016 模拟赛 ——那些年,我们学过的文化课 背单词(word.c/cpp/pas)[题目描述]fqk 退役后开始补习文化课啦, 于是他打开了英语必修一开始背单词. 看着满篇的单词非常头疼, ...
- 【BZOJ2653】middle(主席树,二分)
题意:一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序列s. 回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[ ...