1 什么是最大heap

最大heap是一棵完全二叉树。每棵子树的根比它的两棵子树上的节点都要大。

2 建堆的过程

function max_heaptify(A):

for (i = n/2向下取整;i > 0; i--):

max_heaptify_one(A, i)

function max_heaptify_one(A, i):

[largerSon, largerSonIndex] = larger(A, i);

if largerSon < A[i]:

return

else:

tmp = A[i]

A[i] = A[largerSonIndex]

A[largerSonIndex] = tmp

max_heaptify_one(A, largerSonIndex)

3 建堆的时间复杂度

o(n),线性的。

假设要建的堆是一个满二叉树。从倒数第二层的最后一个结点往前都要进行以该结点为root的堆化,最坏情况下,每次堆化都要一直换到最底层的叶子结点处。

倒数第二层的结点有2^(h-1)个,每个需要进行1次比较,故共要进行(2^(h-1)*1)次比较;

倒数第三层的结点有2^(h-2)个,每个需要进行2次比较,故共要进行(2^(h-2)*2)次比较;

..................

第一层有1个结点,需要进行h-1次比较,故共要进行(1*(h-1))次比较;

加起来

N =  (2^(h-1)*1) + (2^(h-2)*2) + ... + 1*(h-1) = (2-(2 + h)/(2^h)) * n

(2-(2 + h)/(2^h)) < 2

故O(n) = n,因此建堆的时间复杂度是线形的。

算法分析的过程本质上分析的是该算法的上界,因此在计算不等式的时候,该放的时候就要放。

4 堆排序

Max_Heaptify(A)

for i = 0; i < n; i ++:

B[i] = A[1]

A[1] = A[n - i]

Max_Heaptify_one(A, 1)

5 节点数为n的完全二叉树的非叶子节点个数为 n/2向下取整,叶子节点的个数为n/2向上取整

5.1 n向上取整等式

(n + r)整个的向上取整 = n向上取整 + r,这里r是整数

这个可以根据定义来证明,并且定义的区间里面只有一个整数,所以是等价的。只要是在这个区间里面的所有的整数都是同一个,都是相等的。

5.2 非叶子节点的个数求法如下

假如整棵树共有h层,非叶子节点分为两个部分:

第一,前h-2层的所有节点,总共2^(h-2) - 1

第二,第h-1层的部分节点,等于最后一层的所有的叶子结点的个数/2取上限,因为每个非叶子节点至少有一个儿子,所以是取上限。

最后一层的叶子节点数等于n - 2^(h-1) + 1,所以这一层的非叶子结点数为(n - 2^(h-1) + 1)/2向上取整。

这样非叶子结点总数为

2^(h-2) - 1 + (n - 2^(h-1) + 1)/2向上取整 = (n/2 - 1/2)向上取整 = n/2向下取整。

因此也叶子结点总数为n/2向上取整,这样总共有n个结点。

6 注意事项

6.1 实现堆时是从数组的下标为1开始的,不是从0开始的

A[0]是丢弃的,从A[1]开始。在比较根和两个儿子的大小的时候,是i和2i、2i+1进行比较的。

最大heap的更多相关文章

  1. java head space/ java.lang.OutOfMemoryError: Java heap space内存溢出

    上一篇JMX/JConsole调试本地还可以在centos6.5 服务器上进行监控有个问题端口只开放22那么设置的9998端口 你怎么都连不上怎么监控?(如果大神知道还望指点,个人见解) 线上项目出现 ...

  2. Java 堆内存与栈内存异同(Java Heap Memory vs Stack Memory Difference)

    --reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ...

  3. [数据结构]——堆(Heap)、堆排序和TopK

    堆(heap),是一种特殊的数据结构.之所以特殊,因为堆的形象化是一个棵完全二叉树,并且满足任意节点始终不大于(或者不小于)左右子节点(有别于二叉搜索树Binary Search Tree).其中,前 ...

  4. Windbg Extension NetExt 使用指南 【3】 ---- 挖掘你想要的数据 Managed Heap

    摘要 : NetExt中有两个比较常用的命令可以用来分析heap上面的对象. 一个是!wheap, 另外一个是!windex. !wheap 这个命令可以用于打印出heap structure信息. ...

  5. JAVA Shallow heap & Retained heap

    最近在研究内存泄漏的问题,在使用MAT工具中发现了Shallow heap & Retained heap,不懂. 然后在网上找了一些资料. Shallow Size 对象自身占用的内存大小, ...

  6. 笔记:程序内存管理 .bss .data .rodata .text stack heap

    1.未初始化的全局变量(.bss段) bss段用来存放 没有被初始化 和 已经被初始化为0 的全局变量.如下例代码: #include<stdio.h> int bss_array[102 ...

  7. STL heap usage

    简介 heap有查找时间复杂度O(1),查找.插入.删除时间复杂度为O(logN)的特性,STL中heap相关的操作如下: make_heap() push_heap() pop_heap() sor ...

  8. Nodemanager Out of heap memory[fix bug全过程]

    问题: 自己写了一个yarn上的application,发现nodemanager过段时间,会out of memory退出,把nodemanager的heap memory从1G增大到2G也是无法避 ...

  9. Git使用出错:Couldn‘t reserve space for cygwin‘s heap, Win32

    今天使用Git在命令行下更新代码遇到了问题,起初觉得是自己安装某软件导致冲突,从网上搜索了一下找到类似问题,成功解决问题. 错误信息如下: E:\storm-sql>git pull origi ...

  10. Insert or Merge && Insertion or Heap Sort

    原题连接:https://pta.patest.cn/pta/test/1342/exam/4/question/27102 题目如下: According to Wikipedia: Inserti ...

随机推荐

  1. [kuangbin带你飞]专题四 最短路练习

    对于最短路,我主要使用的就是dijkstra,Floyd,SPFA这三个算法.先来介绍一下这三个算法. 1. dijkstra算法.它适用于边权为正的情况,它是单源最短路,就是从单个源点出发到所有的结 ...

  2. [Python3网络爬虫开发实战] 3.2.2-高级用法

    在前一节中,我们了解了requests的基本用法,如基本的GET.POST请求以及Response对象.本节中,我们再来了解下requests的一些高级用法,如文件上传.cookie设置.代理设置等. ...

  3. 零基础入门学习Python(31)--永久存储:腌制一缸美味的泡菜

    知识点 pickle( 泡菜 ) 模块介绍: pickle模块作用是持久化的储存数据. 在Python程序运行中得到了一些字符串.列表.字典等数据,想要长久的保存下来,方便以后使用, 而不是简单的放入 ...

  4. Runlevel in Linux

    运行级别(Runlevel)指的是Unix或者Linux等类Unix操作系统下不同的运行模式.运行级别通常分为7等,分别是从0到6,但如果必要的话也可以更多. 例如在大多数Linux操作系统下一共有如 ...

  5. 《深入浅出深度学习:原理剖析与python实践》第八章前馈神经网络(笔记)

    8.1 生物神经元(BN)结构 1.人脑中有100亿-1000亿个神经元,每个神经元大约会和其他1万个神经元相连 2.细胞体:神经元的主体,细胞体=细胞核+细胞质+细胞膜,存在膜电位 3.树突:从细胞 ...

  6. MySQL-----增

    增 **创建用户** create user 'alex'@'192.168.1.1' identified by '123123'; create user 'alex'@'192.168.1.%' ...

  7. javascript中点击事件传入this的用法

    在script中有几种绑定事件的方法,有的在绑定函数中传入this参数,有的没有,那么,它们之间到底有什么区别呢? <!DOCTYPE html> <html lang=" ...

  8. SPI与I2C

    spi的最快传输速率是20mhz,i2c的传输速率是400khz. 版权声明:本文为博主原创文章,未经博主允许不得转载.

  9. 关于必须添加对程序集“System.Runtime, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a”的引用异常问题

    问题描述: 下午调试代码的时候突然发现页面突然异常了,原本以为是代码哪里写错了,后来通过定位发现MVC,UI界面的Linq异常,即关于必须添加对程序集“System.Runtime, Version= ...

  10. C51 矩阵按键 个人笔记

    矩阵按键 电路 每个按键一端和同行一端相连(JP4的高4位),另一端和同列一端相连(JP4的低4位) 判断按键是否按下: 法一:逐行扫描 for(int i = 8 ; i>3 ; i-- ) ...