链接:https://www.nowcoder.com/acm/contest/173/A
来源:牛客网

题目描述

一个长度为 m 的序列 b[1...m] ,我们定义它的方差为 ,其中  表示序列的平均值。
可以证明的是,如果序列元素均为整数,那么方差乘以 m^2 之后,得到的值一定是整数。

现在有一个长度为 N 的序列 a[1...N],对每个 i = 1~N,你需要计算,如果我们删除 a[i],剩下的 N-1 个元素的方差乘以 (N-1)^2 的值。

输入描述:

第一行一个整数 N。
接下来一行 N 个整数,第 i 个数表示 a[i]。

输出描述:

一行 N 个整数,第 i 个数表示删掉 a[i] 后,剩下元素的方差乘以 (N-1)^2 的值。

输入例子:
4
1 1 1 2
输出例子:
2 2 2 0

-->

示例1

输入

复制

4
1 1 1 2

输出

复制

2 2 2 0

说明

依定义可以计算 {1, 1, 2} 的方差为 1/3 * (1/9 + 1/9 + 4/9) = 2/9,{1, 1, 1} 的方差为 0

备注:

对全部的测试数据,N <= 10^5, | a[i] | <= 10^4

* 30 分的数据,N <= 1000
* 30 分的数据,N <= 10^5, a[i] 只有 30 种不同的取值
* 40 分的数据,无特殊限制

对于题目给出的石子我们当然要化简了,答案要乘$(n-1)^2$不如提前乘进去,那么式子:

将n-1带入,n-1也就是公式中的m
$$\frac{1}{n-1} \sum_{i=1}^{n-1}(b_i-\overline{b})^2 \times (n-1)^2=(n-1)\times \sum_{i=1}^{n-1}(b_i-\overline{b})^2$$

下面我们继续处理这个式子:
首先我们都知道$(a-b)^2=a^2+b^2-2ab$
那么

$$
\begin{aligned}
(n-1)\sum_{i=1}^{n-1}(b_i-\overline{b})^2&=(n-1) \times\sum_{i=1}^{n-1}({b_i}^2+\overline{b}^2+2b_i \overline{b})\\
&=(n-1) \times \left( \sum_{i=1}^{n-1}{b_i}^2+\sum_{i=1}^{n-1} \overline{b}^2+\sum_{i=1}^{n-1}2b_i \overline{b} \right)\\
&=(n-1) \times \sum_{i=1}^{n-1}{b_i}^2+(n-1)\times \sum_{i=1}^{n-1} \overline{b}^2-(n-1)\times\sum_{i=1}^{n-1}2b_i \overline{b}\\
\text{因为}\overline{b}&=\frac{\sum_{i=1}^{n-1}b_i}{n-1}\\
&=(n-1) \times\sum_{i=1}^{n-1}{b_i}^2+(n-1)\times\overline{b}-(n-1)\times \sum_{i=1}^{n-1}{2b_i}-(n-1) \times \sum_{i=1}^{n-1}b_i\\
&=(n-1) \times \sum_{i=1}^{n-1}{b_i}^2-(\sum_{i=1}^{n-1})^2
\end{aligned}
$$

答案是每个数的平方和减去每个数和的平方
那么我们只需要记录两个前缀和对于每个数$O(1)$输出,总时间复杂度$O(n)$

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
#define LL long long
LL a[];
LL sum1[],sum2[],n;
// sum(bi^2-2bi*b+b^2)*(n-1)
int main()
{
scanf("%lld",&n);
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
sum1[i]=sum1[i-]+a[i]*a[i];
sum2[i]=sum2[i-]+a[i];
}
LL num1=(sum1[n]-sum1[])*(n-);
LL num2=sum2[n]-sum2[];
printf("%lld",num1-num2*num2);
for(int i=;i<=n;i++)
{
LL num1=(sum1[n]-sum1[i]+sum1[i-])*(n-);
LL num2=sum2[n]-sum2[i]+sum2[i-];
printf(" %lld",num1-num2*num2);
}
}

牛客网NOIP赛前集训营-提高组(第二场)A 方差的更多相关文章

  1. 牛客网NOIP赛前集训营-提高组(第四场)游记

    牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...

  2. 牛客网NOIP赛前集训营-提高组(第四场)B区间

    牛客网NOIP赛前集训营-提高组(第四场)B区间 题目描述 给出一个序列$ a_1  \dots   a_n$. 定义一个区间 \([l,r]\) 是好的,当且仅当这个区间中存在一个 \(i\),使得 ...

  3. 牛客网NOIP赛前集训营-提高组(第四场)B题 区间

    牛客网NOIP赛前集训营-提高组(第四场) 题目描述 给出一个序列 a1, ..., an. 定义一个区间 [l,r] 是好的,当且仅当这个区间中存在一个 i,使得 ai 恰好等于 al, al+1, ...

  4. 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告

    目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...

  5. 牛客网NOIP赛前集训营-提高组18/9/9 A-中位数

    链接:https://www.nowcoder.com/acm/contest/172/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言5242 ...

  6. 牛客网NOIP赛前集训营-提高组(第八场)

    染色 链接:https://ac.nowcoder.com/acm/contest/176/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语言10 ...

  7. 牛客网NOIP赛前集训营 提高组(第七场)

    中国式家长 2 链接:https://www.nowcoder.com/acm/contest/179/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K, ...

  8. [牛客网NOIP赛前集训营-提高组(第一场)]C.保护

    链接:https://www.nowcoder.com/acm/contest/172/C来源:牛客网 题目描述 C国有n个城市,城市间通过一个树形结构形成一个连通图.城市编号为1到n,其中1号城市为 ...

  9. 牛客网NOIP赛前集训营-提高组(第一场)

    牛客的这场比赛感觉真心不错!! 打得还是很过瘾的.水平也比较适合. T1:中位数: 题目描述 小N得到了一个非常神奇的序列A.这个序列长度为N,下标从1开始.A的一个子区间对应一个序列,可以由数对[l ...

随机推荐

  1. 洛谷CF1030F Putting Boxes Together(树状数组)

    题意: 现在有n个物品,第i个物品他的位置在a[i],他的重量为w[i].每一个物品移动一步的代价为他的w[i].目前有2种操作: 1. x y 将第x的物品的重量改为y 2.l r 将编号在 [ l ...

  2. IT兄弟连 JavaWeb教程 Servlet 状态管理 会话跟踪

    HTTP协议是无状态的,我们的客户端与服务器的每一次请求与响应,我们服务器都没有记忆能力将客户端与服务器的多次交互数据进行存储与管理共有两种技术实现: ●  基于客户端实现:Cookie,将状态保存在 ...

  3. 黑客攻防技术宝典web实战篇:查找源代码中的漏洞习题

    猫宁!!! 参考链接:http://www.ituring.com.cn/book/885 随书答案. 1. 列出 3 种可在源代码中找到明确签名的常见漏洞. (a) 跨站点脚本(b) SQL 注入( ...

  4. Typora练习测试

    目录 一级标题 二级标题 三级标题 一级标题 二级标题 三级标题 这是下划线 删除线 字体加粗ctrl+b 这是倾斜线 1111 牛奶 面包 鸡蛋 包子 蛋糕 测试 牛奶 面包 鸡蛋 电脑 鼠标 键盘 ...

  5. Vue-CLI3详解

    vue-cli3快速开始 node 安装,略. webpack 安装webpack npm install webpack webpack-cli -g 查看版本 webpack -v vue-cli ...

  6. 2019 年 Vue 学习路线图!

    如果你是 Vue 开发新手,可能已经听过很多行话术语,比如单页面应用程序.异步组件.服务器端渲染,等等.你可能还听说过与 Vue 有关的一些工具和库,比如 Vuex.Webpack.Vue CLI 和 ...

  7. background-size属性

    background-size:属性有 auto:length :百分比 length 如:10px 20px 固定的 或者是写成一个 ,10px  另外一个就默认为 auto; 写成百分比的形式 是 ...

  8. Lightoj 1044 - Palindrome Partitioning (DP)

    题目链接: Lightoj  1044 - Palindrome Partitioning 题目描述: 给一个字符串,问至少分割多少次?分割出来的子串都是回文串. 解题思路: 先把给定串的所有子串是不 ...

  9. 数学 2015百度之星初赛2 HDOJ 5255 魔法因子

    题目传送门 /* 数学:不会写,学习一下这种解题方式:) 思路:设符合条件的数的最高位是h,最低位是l,中间不变的部分为mid,由题意可得到下面的公式(这里对X乘上1e6用a表示,b表示1e6) (h ...

  10. HTML入门与基础 —— 标签《一》

    一.标签概述 1.HTML(英文Hyper Text Markup Language的缩写)中文译为“超文本标签语言”,主要是通过HTML标签对网页中的文本.图片.声音等内容进行描述. 2.标签分为嵌 ...