题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489

Problem Description
For a tree, which nodes and edges are all weighted, the ratio of it is calculated according to the following equation.










Given a complete graph of n nodes with all nodes and edges weighted, your task is to find a tree, which is a sub-graph of the original graph, with m nodes and whose ratio is the smallest among all the trees of m nodes in the graph.
Input
Input contains multiple test cases. The first line of each test case contains two integers n (2<=n<=15) and m (2<=m<=n), which stands for the number of nodes in the graph and the number of nodes in the minimal ratio tree. Two zeros end the input. The next line
contains n numbers which stand for the weight of each node. The following n lines contain a diagonally symmetrical n×n connectivity matrix with each element shows the weight of the edge connecting one node with another. Of course, the diagonal will be all
0, since there is no edge connecting a node with itself.





All the weights of both nodes and edges (except for the ones on the diagonal of the matrix) are integers and in the range of [1, 100].



The figure below illustrates the first test case in sample input. Node 1 and Node 3 form the minimal ratio tree. 



 
Output
For each test case output one line contains a sequence of the m nodes which constructs the minimal ratio tree. Nodes should be arranged in ascending order. If there are several such sequences, pick the one which has the smallest node number; if there's a tie,
look at the second smallest node number, etc. Please note that the nodes are numbered from 1 .
 
Sample Input
3 2
30 20 10
0 6 2
6 0 3
2 3 0
2 2
1 1
0 2
2 0
0 0
 
Sample Output
1 3
1 2
 
Source

题意:

给出n个点。要从中选出m个点。要求选出的这m个点的全部边的边权值/点权值要最小!

并要输出所选的这m个点,假设有多种选择方法,那么就输出第一个点小的方案,假设第一个点同样就输出第二个点小的,一次类推!

PS:

因为这题的n比較小,仅仅有15。所以能够先dfs枚举出所选择的点。然后在用最小生成树Prim算出最小的边权值的和。

代码例如以下:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
#define INF 1e18;
const double eps = 1e-9;
const int maxn = 17;
int n, m;
int e_val[maxn][maxn];
int node[maxn];
int ansn[maxn];//记录终于选得是哪些点
int tt[maxn];//记录中间过程选得是哪些点
int vis[maxn];
int low[maxn];
double minn;
int Prim(int s)
{
int sum=0;
memset(vis,0,sizeof(vis));
for(int i = 1; i <= m; i++)
{
low[tt[i]] = e_val[s][tt[i]];
}
vis[s] = 1;
low[s] = 0;
int pos = s;
for(int i = 1; i < m; i++)
{
int min_t = INF;
for(int j = 1; j <= m; j++)
{
if(!vis[tt[j]] && min_t > low[tt[j]])
{
min_t = low[tt[j]];
pos = tt[j];
}
}
vis[pos] = 1;
sum += min_t;
for(int j = 1; j <= m; j++)
{
if(!vis[tt[j]] && e_val[pos][tt[j]] < low[tt[j]])
low[tt[j]]=e_val[pos][tt[j]];
}
}
return sum;
}
void DFS(int n_pre, int k)
{
if(k == m)
{
double n_sum = 0;
for(int i = 1; i <= m ; i++)
{
n_sum+=node[tt[i]];
}
double e_ans = 0;
e_ans = Prim(tt[1]);
double ans = e_ans/(n_sum*1.0);
//if(ans < minn)
if(ans - minn < -(eps))
{
minn = ans;
for(int i = 1; i <= m; i++)
{
ansn[i] = tt[i];
}
}
return ;
}
for(int i = n_pre+1; i <= n; i++)
{
tt[k+1] = i;
DFS(i,k+1);
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
if(n==0 && m==0)
break;
minn = INF;
for(int i = 1; i <= n; i++)
{
scanf("%d",&node[i]);
}
for(int i = 1; i <= n; i++)
{
for(int j = 1; j <= n; j++)
{
scanf("%d",&e_val[i][j]);
}
}
for(int i = 1; i <= n; i++)
{
tt[1] = i;
DFS(i, 1);
}
for(int i = 1; i < m; i++)
{
printf("%d ",ansn[i]);
}
printf("%d\n",ansn[m]);
}
return 0;
}

HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)的更多相关文章

  1. HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)

    Minimal Ratio Tree Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  2. HDU 2489 Minimal Ratio Tree(dfs枚举+最小生成树)

    想到枚举m个点,然后求最小生成树,ratio即为最小生成树的边权/总的点权.但是怎么枚举这m个点,实在不会.网上查了一下大牛们的解法,用dfs枚举,没想到dfs还有这么个作用. 参考链接:http:/ ...

  3. HDU 2489 Minimal Ratio Tree(prim+DFS)

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)

    Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...

  5. HDU 2489 Minimal Ratio Tree 最小生成树+DFS

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. hdu 2489 Minimal Ratio Tree

    http://acm.hdu.edu.cn/showproblem.php?pid=2489 这道题就是n个点中选择m个点形成一个生成树使得生成树的ratio最小.暴力枚举+最小生成树. #inclu ...

  7. hdu2489 Minimal Ratio Tree dfs枚举组合情况+最小生成树

    #include <stdio.h> #include <set> #include <string.h> #include <algorithm> u ...

  8. HDU2489 Minimal Ratio Tree 【DFS】+【最小生成树Prim】

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  9. Minimal Ratio Tree HDU - 2489

    Minimal Ratio Tree HDU - 2489 暴力枚举点,然后跑最小生成树得到这些点时的最小边权之和. 由于枚举的时候本来就是按照字典序的,不需要额外判. 错误原因:要求输出的结尾不能有 ...

随机推荐

  1. springboot与dubbo整合遇到的坑

    整合环境: dubbo 2.6.2 springboot 2.1.5 遇到的问题:服务一直无法注册到zookeeper注册中心 项目结构: 使用application.properties文件: 配置 ...

  2. 微信小程序组件解读和分析:三、swiper滑块视图

    swiper滑块组件说明: 滑块视图容器,用于展示图片,可以通过用户拖拽和设置自动切换属性控制图片的切换   组件的使用示例的运行效果如下: 下面是WXML代码: [XML] 纯文本查看 复制代码 ? ...

  3. 求助:可以使用任何编程工具做成一个控件或组件,使得在VB中能调用并得到摄像头的参数及图片。

    请看下网址上的这个问题,看是否有解决的方式http://www.educity.cn/wenda/338634.html

  4. Socket编程的简单实现

    关于socket编程的简单实现,主要分成客户端.服务端两个部分.实现如下: 1.服务端代码如下,注意:server端要优先于client端启动 2.client端代码,以及启动后客户端和服务端之间的简 ...

  5. arx 移动界面到一点

    AcDbViewTableRecord view; AcGePoint3d max = acdbHostApplicationServices()->workingDatabase()-> ...

  6. vue项目 build之后发布到服务器index.html页面空白解决方法

    第一部分 之前一直不太理解为什么要使用vue+webapck,还有在使用了vue-cli之后会用到后台,即vue-cli自动帮我们安装了express服务器,在本地服务器上运行,因为我们希望可以模拟在 ...

  7. Android 按钮常用点击事件大总结

    很多学习Android程序设计的人都会发现每个人对代码的写法都有不同的偏好,比较明显的就是对控件响应事件的写法的不同.因此本文就把这些写法总结一下,比较下各种写法的优劣,希望对大家灵活地选择编码方式可 ...

  8. UVA - 247 Calling Circles(Floyd求传递闭包)

    题目: 思路: 利用Floyd求传递闭包(mp[i][j] = mp[i][j]||(mp[i][k]&&mp[k][j]);),当mp[i][j]=1&&mp[j][ ...

  9. UVA - 1611 Crane (思路题)

    题目: 输入一个1~n(1≤n≤300)的排列,用不超过96次操作把它变成升序.每次操作都可以选一个长度为偶数的连续区间,交换前一半和后一半.输出每次操作选择的区间的第一个和最后一个元素. 思路: 注 ...

  10. Flask保存或解压上传的文件

    import os import uuid import shutil import zipfile from flask import Flask, render_template, request ...