转自:http://blog.csdn.net/liweisnake/article/details/12966761

今天看到一篇文章,是关于java中如何等待所有线程都执行结束,文章总结得很好,原文如下http://software.intel.com/zh-cn/blogs/2013/10/15/java-countdownlatchcyclicbarrier/?utm_campaign=CSDN&utm_source=intel.csdn.net&utm_medium=Link&utm_content=others-%20Java

看过之后在想java中有很大的灵活性,应该有更多的方式可以做这件事。

这个事情的场景是这样的:许多线程并行的计算一堆问题,然后每个计算存在一个队列,在主线程要等待所有计算结果完成后排序并展示出来。这样的问题其实很常见。

1. 使用join。这种方式其实并不是那么的优雅,将所有线程启动完之后还需要将所有线程都join,但是每次join都会阻塞,直到被join线程完成,很可能所有被阻塞线程已经完事了,主线程还在不断地join,貌似有点浪费,而且两个循环也不太好看。

  1.  public void testThreadSync1() {  
    
         final Vector<Integer> list = new Vector<Integer>();
    Thread[] threads = new Thread[TEST_THREAD_COUNT];
    try {
    for (int i = 0; i < TEST_THREAD_COUNT; i++) {
    final int num = i;
    threads[i] = new Thread(new Runnable() {
    public void run() {
    try {
    Thread.sleep(random.nextInt(100));
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    list.add(num);
    System.out.print(num + " add.\t");
    }
    });
    threads[i].start();
    }
    for (int i = 0; i < threads.length; i++) {
    threads[i].join();
    System.out.print(i + " end.\t");
    }
    } catch (InterruptedException ie) {
    ie.printStackTrace();
    }
    printSortedResult(list);
    }
  1.  9 add.  7 add.  3 add.  5 add.  4 add.  1 add.  0 add.  0 end.  1 end.  8 add.  2 add.  2 end.  3 end.  4 end.  5 end.  6 add.  6 end.  7 end.  8 end.  9 end.
    before sort
    9 7 3 5 4 1 0 8 2 6
    after sort
    0 1 2 3 4 5 6 7 8 9

2. 使用wait/notifyAll,这个方式其实跟上面是类似的,只是比较底层些吧(join实际上也是wait)。

  1.  @Test
    public void testThreadSync2() throws IOException, InterruptedException {
    final Object waitObject = new Object();
    final AtomicInteger count = new AtomicInteger(TEST_THREAD_COUNT);
    final Vector<Integer> list = new Vector<Integer>();
    Thread[] threads = new Thread[TEST_THREAD_COUNT];
    for (int i = 0; i < TEST_THREAD_COUNT; i++) {
    final int num = i;
    threads[i] = new Thread(new Runnable() {
    public void run() {
    try {
    Thread.sleep(random.nextInt(100));
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    list.add(num);
    System.out.print(num + " add.\t");
    synchronized (waitObject) {
    int cnt = count.decrementAndGet();
    if (cnt == 0) {
    waitObject.notifyAll();
    }
    }
    }
    });
    threads[i].start();
    }
    synchronized (waitObject) {
    while (count.get() != 0) {
    waitObject.wait();
    }
    }
    printSortedResult(list);
    }

3. 使用CountDownLatch,这其实是最优雅的写法了,每个线程完成后都去将计数器减一,最后完成时再来唤醒。

例1

  1.  @Test
    public void testThreadSync3() {
    final Vector<Integer> list = new Vector<Integer>();
    Thread[] threads = new Thread[TEST_THREAD_COUNT];
    final CountDownLatch latch = new CountDownLatch(TEST_THREAD_COUNT);
    for (int i = 0; i < TEST_THREAD_COUNT; i++) {
    final int num = i;
    threads[i] = new Thread(new Runnable() {
    public void run() {
    try {
    Thread.sleep(random.nextInt(100));
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    list.add(num);
    System.out.print(num + " add.\t");
    latch.countDown();
    }
    });
    threads[i].start();
    }
    try {
    latch.await();
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    printSortedResult(list);
    }

例2

CountDownLatch 初始化设置count,即等待(await)count个线程或一个线程count次计数,通过工作线程来countDown计数减一,直到计数为0,await阻塞结束。

设置的count不可更改,如需要动态设置计数的线程数,可以使用CyclicBarrier.

下面的例子,所有的工作线程中准备就绪以后,并不是直接运行,而是等待主线程的信号后再执行具体的操作。

  1.  package com.example.multithread;  
    
     import java.util.concurrent.CountDownLatch;  
    
     class Driver
    {
    private static final int TOTAL_THREADS = 10;
    private final CountDownLatch mStartSignal = new CountDownLatch(1);
    private final CountDownLatch mDoneSignal = new CountDownLatch(TOTAL_THREADS); void main()
    {
    for (int i = 0; i < TOTAL_THREADS; i++)
    {
    new Thread(new Worker(mStartSignal, mDoneSignal, i)).start();
    }
    System.out.println("Main Thread Now:" + System.currentTimeMillis());
    doPrepareWork();// 准备工作
    mStartSignal.countDown();// 计数减一为0,工作线程真正启动具体操作
    doSomethingElse();//做点自己的事情
    try
    {
    mDoneSignal.await();// 等待所有工作线程结束
    }
    catch (InterruptedException e)
    {
    // TODO Auto-generated catch block
    e.printStackTrace();
    }
    System.out.println("All workers have finished now.");
    System.out.println("Main Thread Now:" + System.currentTimeMillis());
    } void doPrepareWork()
    {
    System.out.println("Ready,GO!");
    } void doSomethingElse()
    {
    for (int i = 0; i < 100000; i++)
    {
    ;// delay
    }
    System.out.println("Main Thread Do something else.");
    }
    } class Worker implements Runnable
    {
    private final CountDownLatch mStartSignal;
    private final CountDownLatch mDoneSignal;
    private final int mThreadIndex; Worker(final CountDownLatch startSignal, final CountDownLatch doneSignal,
    final int threadIndex)
    {
    this.mDoneSignal = doneSignal;
    this.mStartSignal = startSignal;
    this.mThreadIndex = threadIndex;
    } @Override
    public void run()
    {
    // TODO Auto-generated method stub
    try
    {
    mStartSignal.await();// 阻塞,等待mStartSignal计数为0运行后面的代码
    // 所有的工作线程都在等待同一个启动的命令
    doWork();// 具体操作
    System.out.println("Thread " + mThreadIndex + " Done Now:"
    + System.currentTimeMillis());
    mDoneSignal.countDown();// 完成以后计数减一
    }
    catch (InterruptedException e)
    {
    // TODO Auto-generated catch block
    e.printStackTrace();
    }
    } public void doWork()
    {
    for (int i = 0; i < 1000000; i++)
    {
    ;// 耗时操作
    }
    System.out.println("Thread " + mThreadIndex + ":do work");
    }
    } public class CountDownLatchTest
    {
    public static void main(String[] args)
    {
    // TODO Auto-generated method stub
    new Driver().main();
    } }

    通过Executor启动线程:

    1.  class CountDownLatchDriver2
      {
      private static final int TOTAL_THREADS = 10;
      private final CountDownLatch mDoneSignal = new CountDownLatch(TOTAL_THREADS); void main()
      {
      System.out.println("Main Thread Now:" + System.currentTimeMillis());
      doPrepareWork();// 准备工作 Executor executor = Executors.newFixedThreadPool(TOTAL_THREADS);
      for (int i = 0; i < TOTAL_THREADS; i++)
      {
      // 通过内建的线程池维护创建的线程
      executor.execute(new RunnableWorker(mDoneSignal, i));
      }
      doSomethingElse();// 做点自己的事情
      try
      {
      mDoneSignal.await();// 等待所有工作线程结束
      }
      catch (InterruptedException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      }
      System.out.println("All workers have finished now.");
      System.out.println("Main Thread Now:" + System.currentTimeMillis());
      } void doPrepareWork()
      {
      System.out.println("Ready,GO!");
      } void doSomethingElse()
      {
      for (int i = 0; i < 100000; i++)
      {
      ;// delay
      }
      System.out.println("Main Thread Do something else.");
      }
      } class RunnableWorker implements Runnable
      { private final CountDownLatch mDoneSignal;
      private final int mThreadIndex; RunnableWorker(final CountDownLatch doneSignal, final int threadIndex)
      {
      this.mDoneSignal = doneSignal;
      this.mThreadIndex = threadIndex;
      } @Override
      public void run()
      {
      // TODO Auto-generated method stub doWork();// 具体操作
      System.out.println("Thread " + mThreadIndex + " Done Now:"
      + System.currentTimeMillis());
      mDoneSignal.countDown();// 完成以后计数减一
      // 计数为0时,主线程接触阻塞,继续执行其他任务
      try
      {
      // 可以继续做点其他的事情,与主线程无关了
      Thread.sleep(5000);
      System.out.println("Thread " + mThreadIndex
      + " Do something else after notifing main thread"); }
      catch (InterruptedException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      } } public void doWork()
      {
      for (int i = 0; i < 1000000; i++)
      {
      ;// 耗时操作
      }
      System.out.println("Thread " + mThreadIndex + ":do work");
      }
      }

      输出:

       Main Thread Now:1359959480786
      Ready,GO!
      Thread 0:do work
      Thread 0 Done Now:1359959480808
      Thread 1:do work
      Thread 1 Done Now:1359959480811
      Thread 2:do work
      Thread 2 Done Now:1359959480813
      Main Thread Do something else.
      Thread 3:do work
      Thread 3 Done Now:1359959480825
      Thread 5:do work
      Thread 5 Done Now:1359959480827
      Thread 7:do work
      Thread 7 Done Now:1359959480829
      Thread 9:do work
      Thread 9 Done Now:1359959480831
      Thread 4:do work
      Thread 4 Done Now:1359959480833
      Thread 6:do work
      Thread 6 Done Now:1359959480835
      Thread 8:do work
      Thread 8 Done Now:1359959480837
      All workers have finished now.
      Main Thread Now:1359959480838
      Thread 0 Do something else after notifing main thread
      Thread 1 Do something else after notifing main thread
      Thread 2 Do something else after notifing main thread
      Thread 3 Do something else after notifing main thread
      Thread 9 Do something else after notifing main thread
      Thread 7 Do something else after notifing main thread
      Thread 5 Do something else after notifing main thread
      Thread 4 Do something else after notifing main thread
      Thread 6 Do something else after notifing main thread
      Thread 8 Do something else after notifing main thread

4. 使用CyclicBarrier。这里其实类似上面,这个berrier只是在等待完成后自动调用传入CyclicBarrier的Runnable。

例1

  1.  @Test
    public void testThreadSync4() throws IOException {
    final Vector<Integer> list = new Vector<Integer>();
    Thread[] threads = new Thread[TEST_THREAD_COUNT];
    final CyclicBarrier barrier = new CyclicBarrier(TEST_THREAD_COUNT,
    new Runnable() {
    public void run() {
    printSortedResult(list);
    }
    });
    for (int i = 0; i < TEST_THREAD_COUNT; i++) {
    final int num = i;
    threads[i] = new Thread(new Runnable() {
    public void run() {
    try {
    Thread.sleep(random.nextInt(100));
    } catch (InterruptedException e) {
    e.printStackTrace();
    }
    list.add(num);
    System.out.print(num + " add.\t");
    try {
    barrier.await();
    } catch (InterruptedException e) {
    e.printStackTrace();
    } catch (BrokenBarrierException e) {
    e.printStackTrace();
    }
    }
    });
    threads[i].start();
    }
    System.in.read();
    }

    例2

    1.  class WalkTarget
      {
      private final int mCount = 5;
      private final CyclicBarrier mBarrier;
      ExecutorService mExecutor; class BarrierAction implements Runnable
      {
      @Override
      public void run()
      {
      // TODO Auto-generated method stub
      System.out.println("所有线程都已经完成任务,计数达到预设值");
      //mBarrier.reset();//恢复到初始化状态 }
      } WalkTarget()
      {
      //初始化CyclicBarrier
      mBarrier = new CyclicBarrier(mCount, new BarrierAction());
      mExecutor = Executors.newFixedThreadPool(mCount); for (int i = 0; i < mCount; i++)
      {
      //启动工作线程
      mExecutor.execute(new Walker(mBarrier, i));
      }
      }
      } //工作线程
      class Walker implements Runnable
      {
      private final CyclicBarrier mBarrier;
      private final int mThreadIndex; Walker(final CyclicBarrier barrier, final int threadIndex) {
      mBarrier = barrier;
      mThreadIndex = threadIndex;
      } @Override
      public void run()
      {
      // TODO Auto-generated method stub
      System.out.println("Thread " + mThreadIndex + " is running...");
      // 执行任务
      try
      {
      TimeUnit.MILLISECONDS.sleep(5000);
      // do task
      }
      catch (InterruptedException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      } // 完成任务以后,等待其他线程完成任务
      try
      {
      mBarrier.await();
      }
      catch (InterruptedException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      }
      catch (BrokenBarrierException e)
      {
      // TODO Auto-generated catch block
      e.printStackTrace();
      }
      // 其他线程任务都完成以后,阻塞解除,可以继续接下来的任务
      System.out.println("Thread " + mThreadIndex + " do something else");
      } } public class CountDownLatchTest
      {
      public static void main(String[] args)
      {
      // TODO Auto-generated method stub
      //new CountDownLatchDriver2().main();
      new WalkTarget();
      } }

      输出(注意,只有所有的线程barrier.await之后才能继续执行其他的操作):

      Thread 0 is running... Thread 2 is running... Thread 3 is running... Thread 1 is running... Thread 4 is running... 所有线程都已经完成任务,计数达到预设值 Thread 4 do something else Thread 0 do something else Thread 2 do something else Thread 3 do something else Thread 1 do something else

5、

CountDownLatch和CyclicBarrier简单比较:

CountDownLatch

CyclicBarrier

软件包

java.util.concurrent

java.util.concurrent

适用情景

主线程等待多个工作线程结束

多个线程之间互相等待,直到所有线程达到一个障碍点(Barrier point)

主要方法

CountDownLatch(int count) (主线程调用)

初始化计数

CountDownLatch.await (主线程调用)

阻塞,直到等待计数为0解除阻塞

CountDownLatch.countDown

计数减一(工作线程调用)

CyclicBarrier(int parties, Runnable barrierAction) //初始化参与者数量和障碍点执行Action,Action可选。由主线程初始化

CyclicBarrier.await() //由参与者调用

阻塞,直到所有线程达到屏障点

等待结束

各线程之间不再互相影响,可以继续做自己的事情。不再执行下一个目标工作。

在屏障点达到后,允许所有线程继续执行,达到下一个目标。可以重复使用CyclicBarrier

异常

如果其中一个线程由于中断,错误,或超时导致永久离开屏障点,其他线程也将抛出异常。

其他

如果BarrierAction不依赖于任何Party中的所有线程,那么在任何party中的一个线程被释放的时候,可以直接运行这个Action。

If(barrier.await()==2)

{

//do action

}

java中等待所有线程都执行结束(转)的更多相关文章

  1. java中等待所有线程都执行结束

    转自:http://blog.csdn.net/liweisnake/article/details/12966761 今天看到一篇文章,是关于java中如何等待所有线程都执行结束,文章总结得很好,原 ...

  2. JAVA中等待所有线程都执行结束(转2)

    场景: package com.java4all.mypoint; import java.util.concurrent.CountDownLatch; public class ThreadTes ...

  3. Java中如何保证线程顺序执行

    只要了解过多线程,我们就知道线程开始的顺序跟执行的顺序是不一样的.如果只是创建三个线程然后执行,最后的执行顺序是不可预期的.这是因为在创建完线程之后,线程执行的开始时间取决于CPU何时分配时间片,线程 ...

  4. 【java】【多线程】等待开启的多个线程都执行完成,再做事情,怎么实现

    今天在controller中写一个接口用来测试模拟多个请求同时到达 下订单的情况, 怎么能有效保证高并发下的库存和销量的一致性呢?[具体实现方法:https://www.cnblogs.com/sxd ...

  5. Java中的守护线程 & 非守护线程(简介)

    Java中的守护线程 & 非守护线程 守护线程 (Daemon Thread) 非守护线程,又称用户线程(User Thread) 用个比较通俗的比如,任何一个守护线程都是整个JVM中所有非守 ...

  6. Java 中如何实现线程间通信

    世界以痛吻我,要我报之以歌 -- 泰戈尔<飞鸟集> 虽然通常每个子线程只需要完成自己的任务,但是有时我们希望多个线程一起工作来完成一个任务,这就涉及到线程间通信. 关于线程间通信本文涉及到 ...

  7. Java中的守护线程和非守护线程(转载)

    <什么是守护线程,什么是非守护线程> Java有两种Thread:"守护线程Daemon"(守护线程)与"用户线程User"(非守护线程). 用户线 ...

  8. 详解线程池的作用及Java中如何使用线程池

    服务端应用程序(如数据库和 Web 服务器)需要处理来自客户端的高并发.耗时较短的请求任务,所以频繁的创建处理这些请求的所需要的线程就是一个非常消耗资源的操作.常规的方法是针对一个新的请求创建一个新线 ...

  9. 重新想象 Windows 8 Store Apps (42) - 多线程之线程池: 延迟执行, 周期执行, 在线程池中找一个线程去执行指定的方法

    [源码下载] 重新想象 Windows 8 Store Apps (42) - 多线程之线程池: 延迟执行, 周期执行, 在线程池中找一个线程去执行指定的方法 作者:webabcd 介绍重新想象 Wi ...

随机推荐

  1. Java中TreeMap集合讲解

    1.TreeSet介绍 TreeSet是一个有序集合,可以以任意顺序将元素插入到集合中,在对集合进行遍历的时候,每个元素将自动按照排序后的顺序呈现.底层使用的是二叉树(更具体点是红黑树)实现,对于元素 ...

  2. JS(异步与单线程)

    JS(异步与单线程) 题目1.同步和异步的区别是什么,试举例(例子见知识点) 区别: 1.同步会阻塞代码执行,而异步不会 2.alert 是同步,setTimeout 是异步 题目2.关于 setTi ...

  3. luogu1345 [USACO5.4]奶牛的电信Telecowmunication

    对于每个点,把它拆成有权值为1的边相连的两个点,原边是inf. 边的起点统一加n,ss也加n 这就成了最小割 #include <iostream> #include <cstrin ...

  4. [android开发篇] api demo 官网学习网址

    http://www.android-doc.com/resources/samples/wifidirectdemo/index.html

  5. 信安实验-RC4加密算法

    RC4加密算法 算法具体就不介绍了,应信安老师要求整理及掌握. #include<bits/stdc++.h> using namespace std; const int N=256; ...

  6. c++ stack,queue,vector基本操作

    stack 的基本操作有:入栈,如例:s.push(x);出栈,如例:s.pop();注意,出栈操作只是删除栈顶元素,并不返回该元素.访问栈顶,如例:s.top()判断栈空,如例:s.empty(), ...

  7. 阐述struts2的执行流程。

    Struts 2框架本身大致可以分为3个部分:核心控制器FilterDispatcher.业务控制器Action和用户实现的企业业务逻辑组件. 核心控制器FilterDispatcher是Struts ...

  8. bzoj2324 [ZJOI2011]营救皮卡丘 费用流

    [ZJOI2011]营救皮卡丘 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2653  Solved: 1101[Submit][Status][D ...

  9. uva 10140 素数筛选(两次)

    #include<iostream> #include<cstring> #include<cmath> #include<cstdio> using ...

  10. hdu 1104 数论+bfs

    Remainder Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...