http://codeforces.com/problemset/problem/762/D

因为是3*n很巧妙的地方是 往左走两步或更多的走法都可以用往回走以一步

并走完一列来替换 那么走的方法就大大减少 左边一列转移到右边一列 每个

格子的转移方法枚举出来 用动态规划即可解决

最主要的是因为他能够往回走.
但是我们画图可以发现:每次往回走一定不用超过1次.
也就是说,最多只能走成这样

而不会走成这样

因为下图的走法一定可以用上图组合,并且
由于只用3行的特性,每次向回走实际上是取走了所有的数.
所以我们只采用上图方式得出来的答案一定最优

 #include <bits/stdc++.h>
#define INF 0x7fffffff
using namespace std; typedef long long LL;
LL grid[][];
LL tmp[][];
LL dp[][];
int main()
{
int n;
scanf("%d", &n);
for (int i = ; i < ; i++)
for (int j = ; j < n; j++)
{
scanf("%lld", &grid[i][j]);
}
dp[][] = grid[][];
dp[][] = grid[][] + grid[][];
dp[][] = grid[][] + grid[][] + grid[][];
tmp[][] = grid[][];
tmp[][] = grid[][];
tmp[][] = grid[][];
for(int j = ;j < n; j++)
{
for (int i = ; i < ; i++)
{
dp[i][j] = tmp[i][j] = dp[i][j-] + grid[i][j];
}//这样的转移走法 包括了所有的走法
dp[][j] = max(dp[][j], tmp[][j] + grid[][j]);
dp[][j] = max(dp[][j], tmp[][j] + grid[][j] + grid[][j]);
dp[][j] = max(dp[][j], tmp[][j] + grid[][j]);
dp[][j] = max(dp[][j], tmp[][j] + grid[][j]);
dp[][j] = max(dp[][j], tmp[][j] + grid[][j]);
dp[][j] = max(dp[][j], tmp[][j] + grid[][j] + grid[][j]);
dp[][j] = max(dp[][j], tmp[][j-] + grid[][j] + grid[][j] + grid[][j-] + grid[][j-] + grid[][j]);
dp[][j] = max(dp[][j], tmp[][j-] + grid[][j] + grid[][j] + grid[][j-] + grid[][j-] + grid[][j]);
}
cout << dp[][n-] << endl;
return ;
}

dp[i][j] i 行 j 列可以得到的最大值

tmp[i][j]直接从右边一个走过来的得到的值

CodeForces 762D Maximum path的更多相关文章

  1. Codeforces 762D Maximum path 动态规划

    Codeforces 762D 题目大意: 给定一个\(3*n(n \leq 10^5)\)的矩形,从左上角出发到右下角,规定每个格子只能经过一遍.经过一个格子会获得格子中的权值.每个格子的权值\(a ...

  2. cf 762D. Maximum path

    天呢,好神奇的一个DP23333%%%%% 因为1.向左走1格的话相当于当前列和向左走列全选 2.想做走超过1的话可以有上下走替代.而且只能在相邻行向左. 全选的情况只能从第1行和第3行转移,相反全选 ...

  3. [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和

    Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...

  4. [leetcode]Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

  5. LeetCode(124) Binary Tree Maximum Path Sum

    题目 Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequen ...

  6. LeetCode124:Binary Tree Maximum Path Sum

    题目: Given a binary tree, find the maximum path sum. The path may start and end at any node in the tr ...

  7. leetcode 124. Binary Tree Maximum Path Sum

    Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...

  8. [lintcode] Binary Tree Maximum Path Sum II

    Given a binary tree, find the maximum path sum from root. The path may end at any node in the tree a ...

  9. 【leetcode】Binary Tree Maximum Path Sum

    Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...

随机推荐

  1. php接受axios数据

    var params = { username: 'admin', password: '123456' } axios.post('test.php', params).then(res => ...

  2. Asp.Net Core 进阶(三)—— IServiceCollection依赖注入容器和使用Autofac替换它

    Asp.Net Core 提供了默认的依赖注入容器 IServiceCollection,它是一个轻量级的依赖注入容器,所以功能不多,只是提供了基础的一些功能,要实现AOP就有点麻烦,因此在实际工作当 ...

  3. currentStyle和getComputedStyle来获取外部样式

    currentStyle和getComputedStyle来获取外部样式 通过document.getElementById(id).style.XXX就可以获取到XXX的值,但意外的是,这样做只能取 ...

  4. Salt Master报错:Minion did not return. [No response]

    在salt master端执行salt ‘*’ test.ping时,某一节点出现如下报错:Minion did not return. [No response] 登陆到这一节点查看minion的日 ...

  5. NoSuchBeanDefinitionException: No qualifying bean of type 'com.bj186.ssm.mapper.EmployeeMapper' available: expected at least 1 bean which qualifies as autowire candidate

    在搭建SSM spring springmvc  mybatis整合的时候, 遇到了这个问题 说说我的问题吧!我在进行单元测试的时候,出现了这个错误,网上一查才知道是,配置文件中没有写扫描包信息.一看 ...

  6. Java InputStream、String、File相互转化

    String --> InputStreamByteArrayInputStream stream = new ByteArrayInputStream(str.getBytes()); Inp ...

  7. 任务十一:移动Web页面布局实践

    面向人群: 有一定HTML及CSS基础,想要尝试移动开发 难度: 中 重要说明 百度前端技术学院的课程任务是由百度前端工程师专为对前端不同掌握程度的同学设计.我们尽力保证课程内容的质量以及学习难度的合 ...

  8. windows10锁定屏幕聚焦图片导出

    打开运行,输入%LocalAppData%\Packages\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\LocalState\Ass ...

  9. 【树状数组 离散化】bzoj1573: [Usaco2009 Open]牛绣花cowemb

    解方程题! Description Bessie学会了刺绣这种精细的工作.牛们在一片半径为d(1 <= d <= 50000)的圆形布上绣花. 它们一共绣了N (2 <= N < ...

  10. Taro:使用taro完成小程序开发

    前言:taro是一个可以很好实现一次开发,多端统一的框架,本文只介绍它小程序端开发的一些内容.小程序项目搭建gitup已经有很清楚的说明:https://github.com/NervJS/taro ...