题目:

Description

你小时候玩过弹珠吗?
小朋友A有一些弹珠,A喜欢把它们排成队列,从左到右编号为1到N。为了整个队列鲜艳美观,小朋友想知道某一段连续弹珠中,不同颜色的弹珠有多少。当然,A有时候会依据个人喜好,替换队列中某个弹珠的颜色。但是A还没有学过编程,且觉得头脑风暴太浪费脑力了,所以向你来寻求帮助。

Input

输入文件第一行包含两个整数N和M。
第二行N个整数,表示初始队列中弹珠的颜色。
接下来M行,每行的形式为“Q L R”或“R x c”,“Q L R”表示A想知道从队列第L个弹珠到第R个弹珠中,一共有多少不同颜色的弹珠,“R x c”表示A把x位置上的弹珠换成了c颜色。

Output

对于每个Q操作,输出一行表示询问结果。

Sample Input

2 3
1 2
Q 1 2
R 1 2
Q 1 2

Sample Output

2
1

HINT

对于100%的数据,有1 ≤ N ≤ 10000, 1 ≤ M ≤ 10000,小朋友A不会修改超过1000次,所有颜色均用1到10^6的整数表示。

Source

题解:

带修改莫队就是莫队原有排序基础上加个第三关键字:时间,注意排序的顺序都是以所在块为顺序另外利用判断是否在指针内的数组visit[i]结合一个巧妙的change和update操作,另外注意分块的大小为n的2/3次方.

具体见http://blog.csdn.net/doyouseeman/article/details/51869932

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<cctype>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int N=1e4+;
const int M=1e6+;
inline int R()
{
char c;int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar())
f=(f<<)+(f<<)+c-'';
return f;
}
struct node
{
int l,r,x,id;
}ask[N];
struct node2
{
int po,va,pre;
}modi[N];
int s,n,m,cnt[M],last[N],tots,tota,totm,num[N],id[N],head,tail,now,ans,anss[N];
bool visit[N];
inline bool cmp(node a,node b)
{
return (id[a.l]<id[b.l])||(id[a.l]==id[b.l]&&id[a.r]<id[b.r])||(id[a.l]==id[b.l]&&id[a.r]==id[b.r]&&a.x<b.x);
}
inline void update(int pos)
{
if(visit[pos])
{
cnt[num[pos]]--;
if(!cnt[num[pos]]) ans--;
}
else
{
cnt[num[pos]]++;
if(cnt[num[pos]]==) ans++;
}
visit[pos]^=;
}
inline void change(int pos,int val)
{
if(visit[pos])
{
update(pos);
num[pos]=val;
update(pos);
}
else
num[pos]=val;
}
int main()
{
n=R(),m=R();s=pow(n,2.0/3.0);
for(int i=;i<=n;i++)
num[i]=R(),last[i]=num[i];
for(int i=;i<=n;i++)
id[i]=i/s+;int a,b;char t[];
for(int i=;i<=m;i++)
{
scanf("%s",t);
if(t[]=='Q')
ask[++tota].l=R(),ask[tota].r=R(),ask[tota].x=totm,ask[tota].id=tota;
else
modi[++totm].po=R(),modi[totm].va=R(),modi[totm].pre=last[modi[totm].po],last[modi[totm].po]=modi[totm].va;
}
sort(ask+,ask+tota+,cmp);head=;
for(int i=;i<=tota;i++)
{
if(ask[i].x>now) for(int j=now+;j<=ask[i].x;j++) change(modi[j].po,modi[j].va);
else for(int j=now;j>=ask[i].x+;j--) change(modi[j].po,modi[j].pre);
if(head<ask[i].l) for(int j=head;j<=ask[i].l-;j++) update(j);
else for(int j=ask[i].l;j<=head-;j++) update(j);
if(tail>ask[i].r) for(int j=ask[i].r+;j<=tail;j++) update(j);
else for(int j=tail+;j<=ask[i].r;j++) update(j);
head=ask[i].l,tail=ask[i].r,now=ask[i].x,anss[ask[i].id]=ans;
}
for(int i=;i<=tota;i++)
printf("%d\n",anss[i]);
return ;
}

算法复习——带修改莫队(bzoj2453)的更多相关文章

  1. 【BZOJ】4129: Haruna’s Breakfast 树分块+带修改莫队算法

    [题意]给定n个节点的树,每个节点有一个数字ai,m次操作:修改一个节点的数字,或询问一条树链的数字集合的mex值.n,m<=5*10^4,0<=ai<=10^9. [算法]树分块+ ...

  2. 【BZOJ】3052: [wc2013]糖果公园 树分块+带修改莫队算法

    [题目]#58. [WC2013]糖果公园 [题意]给定n个点的树,m种糖果,每个点有糖果ci.给定n个数wi和m个数vi,第i颗糖果第j次品尝的价值是v(i)*w(j).q次询问一条链上每个点价值的 ...

  3. [bzoj2453]维护队列_带修改莫队

    维护队列 bzoj-2453 题目大意:给定一个n个数序列,支持查询区间数的种类数,单点修改.不强制在线. 注释:$1\le n,m\le 10^5$. 想法: 带修改莫队裸题. 如果没有修改操作的话 ...

  4. BZOJ2120 数颜色(带修改莫队)

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  5. BZOJ2120数颜色(带修改莫队)

    莫队算法是一种数据结构的根号复杂度替代品,主要应用在询问[l,r]到询问[l+1,r]和[l,r+1]这两个插入和删除操作复杂度都较低的情况下.具体思想是:如果把一个询问[l,r]看做平面上的点(l, ...

  6. CF940F Machine Learning 带修改莫队

    题意:支持两种操作:$1.$ 查询 $[l,r]$ 每个数字出现次数的 $mex$,$2.$ 单点修改某一位置的值. 这里复习一下带修改莫队. 普通的莫队中,以左端点所在块编号为第一关键字,右端点大小 ...

  7. bzoj 2120 数颜色 带修改莫队

    带修改莫队,每次查询前调整修改 #include<cstdio> #include<iostream> #include<cstring> #include< ...

  8. BZOJ2120&2453数颜色——线段树套平衡树(treap)+set/带修改莫队

    题目描述 墨墨购买了一套N支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会像你发布如下指令: 1. Q L R代表询问你从第L支画笔到第R支画笔中共有几种不同颜色的画笔. 2 ...

  9. BZOJ.2453.维护队列([模板]带修改莫队)

    题目链接 带修改莫队: 普通莫队的扩展,依旧从[l,r,t]怎么转移到[l+1,r,t],[l,r+1,t],[l,r,t+1]去考虑 对于当前所在的区间维护一个vis[l~r]=1,在修改值时根据是 ...

随机推荐

  1. MySQL存储过程(更新指定字段的数据)

    mysql存储过程示例: USE 数据库名称;DROP PROCEDURE IF EXISTS 数据库名称.存储过程名称;delimiter $$CREATE PROCEDURE 数据库名称.存储过程 ...

  2. echarts getAttribute”的值: 对象为 null 或未定义 错误解决方法,

    echarts.js引用放在head中或者放在body中HTML代码的前面了,造成加载时阻塞后面的html. 解决方法就是将echarts.js的引用放在</body>之前就可以了,完美解 ...

  3. POJ 3133 Manhattan Wiring (插头DP,轮廓线,经典)

    题意:给一个n*m的矩阵,每个格子中有1个数,可能是0或2或3,出现2的格子数为2个,出现3的格子数为2个,要求将两个2相连,两个3相连,求不交叉的最短路(起终点只算0.5长,其他算1). 思路: 这 ...

  4. codevs 1131 统计单词数 2011年NOIP全国联赛普及组

     时间限制: 1 s  空间限制: 128000 KB  题目等级 : 白银 Silver 题目描述 Description 一般的文本编辑器都有查找单词的功能,该功能可以快速定位特定单词在文章中的位 ...

  5. ActiveAndroid问题no such table解决总结

     android.database.sqlite.SQLiteException: no such table  at android.database.sqlite.SQLiteConnection ...

  6. 找出指定文件夹中的所有以txt结尾的文件,包括所有嵌套的子文件夹

    # coding:utf-8 import os, re for i in os.walk('d:'+os.sep):     for txt in i[2]:         try:        ...

  7. Java-NestedClass(Interface).

    内部类(Nested Class) 内部类:即在一个类中还包含着另外一个类,一般是作为匿名类或者是使用数据隐藏时使用的.例子: //内部类 class Out{ private int age = 1 ...

  8. 【转】Intellij Idea识别Java Web项目

    使用maven生成一个Java项目,手动添加相应的web目录WEB_INF,web.xml等,此时idea没有自动识别为web项目,此时编辑web.xml文件会出现一些不该出现的错误,需要做的就是让i ...

  9. ZOJ-1360 || POJ-1328——Radar Installation

    ZOJ地址:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=360 POJ地址:http://poj.org/problem?id ...

  10. Python 入门基础

    第一章 计算机基础 1.1 硬件 CPU:处理和运算 内存:临时存储数据 硬盘:永久存储系统 操作系统:是一个软件(特殊), 调度每个硬件之间的数据传输 1.2 操作系统 Windows:xp/7/8 ...