P1168 中位数 (优先队列,巧解)
题目描述
给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数。即前1,3,5,……个数的中位数。
输入输出格式
输入格式:
输入文件median.in的第1行为一个正整数N,表示了序列长度。
第2行包含N个非负整数A[i] (A[i] ≤ 10^9)。
输出格式:
输出文件median.out包含(N + 1) / 2行,第i行为A[1], A[3], …, A[2i – 1]的中位数。
输入输出样例
7
1 3 5 7 9 11 6
1
3
5
6
说明
对于20%的数据,N ≤ 100;
对于40%的数据,N ≤ 3000;
对于100%的数据,N ≤ 100000.
Solution
看到是中位数,一开始想用线段树做,结果发现一点都不好处理.
于是看到别人的思路,蛮巧妙的.
1) 首先,既然是中位数,我们想一想,可不可以在维护的时候把它们这些元素就分成两半呢?
一半存小一点的,一半存大一点的.
2) 既然是要这样存数,那么我们可以直接用一个大根堆和一个小根堆来维护.
3) 然后还有就是,我们需要保证这两个堆的元素个数相差1,这样直接让元素多的那个堆的堆顶输出即可.
然后我直接用的STL 里面的堆.
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=;
int c[maxn],n;
priority_queue <int,vector<int> > q2;
priority_queue <int,vector<int>,greater<int> > q1; int main()
{
scanf("%d",&n);
scanf("%d",&c[]);
if(n%==)n--;
//如果是偶数,我最后一个没必要处理.
cout<<c[]<<endl;
q2.push(c[]);
for(int i=;i<=n;i+=)
{
int x,y;
scanf("%d%d",&x,&y);
if(x>y) swap(x,y);
//保证小一点的数放入大根堆,大一点的放入小根堆.
q2.push(x);
q1.push(y);
if(q2.top()>q1.top())
{
int a=q2.top(),b=q1.top();
q2.pop();
q2.push(b);
q1.pop();
q1.push(a);
}
//最后每次要保证输出q2的top,让操作更加简单.
cout<<q2.top()<<endl;
}
return ;
}
P1168 中位数 (优先队列,巧解)的更多相关文章
- z3 巧解CTF逆向题
z3 巧解逆向题 题目下载链接:http://reversing.kr/download.php?n=7 这次实验的题目为Reversing.kr网站中的一道题目. 题目要求: ReversingKr ...
- P1168 中位数
P1168 中位数树状数组+二分答案.树状数组就是起一个高效查询比二分出来的数小的有几个. #include<iostream> #include<cstdio> #inclu ...
- 如约而至,Java 10 正式发布! Spring+SpringMVC+MyBatis+easyUI整合进阶篇(十四)Redis缓存正确的使用姿势 努力的孩子运气不会太差,跌宕的人生定当更加精彩 优先队列详解(转载)
如约而至,Java 10 正式发布! 3 月 20 日,Oracle 宣布 Java 10 正式发布. 官方已提供下载:http://www.oracle.com/technetwork/java ...
- 洛谷——P1168 中位数
P1168 中位数 题目描述 给出一个长度为NN的非负整数序列$A_i$,对于所有1 ≤ k ≤ (N + 1),输出$A_1, A_3, …, A_{2k - 1}A1,A3,…,A2k−1 ...
- C语言程序设计100例之(16):巧解算式
例16 巧解算式 问题描述 在1.2.3.4.5.6.7.8.9.10个数中间加上加号或减号,使得到的表达式的值为自然数N,如果中间没有符号,则认为前后为一个数,如1 2 3认为是一百二十三(123 ...
- # 「银联初赛第一场」自学图论的码队弟弟(dfs找环+巧解n个二元一次方程)
「银联初赛第一场」自学图论的码队弟弟(dfs找环+巧解n个二元一次方程) 题链 题意:n条边n个节点的连通图,边权为两个节点的权值之和,没有「自环」或「重边」,给出的图中有且只有一个包括奇数个结点的环 ...
- [luogu]P1168 中位数[堆]
[luogu]P1168 中位数 题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.即前1 ...
- P1168 中位数[堆 优先队列]
题目描述 给出一个长度为NNN的非负整数序列AiA_iAi,对于所有1≤k≤(N+1)/21 ≤ k ≤ (N + 1) / 21≤k≤(N+1)/2,输出A1,A3,…,A2k−1A_1, A_3 ...
- 洛谷 P1168 中位数(优先队列)
题目链接 https://www.luogu.org/problemnew/show/P1168 解题思路 这个题就是求中位数,但是暴力会tle,所以我们用一种O(nlogn)的算法来实现. 这里用到 ...
随机推荐
- Android的Activity之间传对象的方法
传值代码块 //Serializeable传递对象的方法 public void SerializeMethod(){ Person mPerson = new Person(); mPerson.s ...
- 搭建一个入门springboot工程
springboot工程搭建(入门案例) 第一步:创建maven工程 第二步:设置项目信息 第三步:默认项目名称,不用改动(第二步已填写) 第三步:在pom.xml中导入依赖 SpringBoot要 ...
- 用 Deployment 运行应用【转】
从本章开始,我们将通过实践深入学习 Kubernetes 的各种特性.作为容器编排引擎,最重要也是最基本的功能当然是运行容器化应用,这就是本章的内容. Deployment 前面我们已经了解到,Kub ...
- 数据库_4_SQL介绍
SQL SQL:Structured Query Language,结构化查询语言(数据已查询为主:99%是在进行查询操作) what型语言,而非how型的语言. SQL分为三个部分: DDL: ...
- 005 String s = "Hello";s = s + " world!";执行这两行代码执行后,原始的 String 对象中的内容到底变了没有?
原始的String对象中的内容没有改变成“Hello world”. 1.原因 因为在Java中String类被设计成不可改变的类,所以String类的所有对象都是不可变的.第一句代码中,s(存储在栈 ...
- helm istio k8s docker
helm https://hub.helm.sh/ k8s https://www.kubernetes.org.cn/k8s istio 微服务 https://istio.io/
- 118. Pascal's Triangle@python
Given a non-negative integer numRows, generate the first numRows of Pascal's triangle. Example: Inpu ...
- JS设置组合快捷键
为提升用户体验,想要在web页面中通过组合快捷键调出用户帮助页面,具体实现思路是监听keyup事件,在相应的处理函数中进行逻辑编写,代码如下 $(document).keyup(function (e ...
- c++ 递归求一个数的阶乘
#include <iostream> using namespace std; long factorial(int value); int main() { int value; co ...
- 删除链表的倒数第N个节点(三种方法实现)
删除链表的倒数第N个节点 给定一个链表,删除链表的倒数第 n 个节点,并且返回链表的头结点. 示例: 给定一个链表: 1->2->3->4->5, 和 n = 2. 当删除了倒 ...