Problem:

Codeforces 1139D

Analysis:

After ACing E, I gave up D and spent the left 30 minutes chatting with Little Dino.

Let \(f[n]\) be the expected number of steps needed to make the greatest common divisor (gcd) become \(1\) when the gcd is \(n\) now, and \(g(n,d)\) be the number of \(x(x\in[1,m])\) that \(gcd(x, n)=d\) . So we have:

\[f[n]=1+\sum_{d|n}\frac{f[d]\cdot g(n, d)}{m}
\]

To make it easy, multiply \(m\) to the equation:

\[mf[n]=m+\sum_{d|n}f[d]\cdot g(n, d)
\]

Notice that \(d\) can be \(n\), and \(g(n,n)\) is \(\lfloor\frac{m}{n}\rfloor\), so we have:

\[(m-\lfloor\frac{m}{n}\rfloor)f[n]=m+\sum_{d|n,d\neq n}f[d]\cdot g(n, d)
\]

Now the problem become how to calculate \(g(n,d)\). According to the defination,

\[\begin{aligned}
g(n, d)&=\sum_{i=1}^m[gcd(n, i)=d]\\
&=\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}[gcd(\frac{n}{d},i)=1]\\
&=\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}\epsilon\left(gcd(\frac{n}{d},i)\right)\\
\end{aligned}
\]

where \(\epsilon(x)=\begin{cases}1\ (x=1)\\0\ \mathrm{otherwise}\end{cases}\) .

According to the Mobius Theorem ( \(\mu * 1 = \epsilon\) ) :

\[\begin{aligned}
g(n,d)&=\sum_{i=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{t|\frac{n}{d},t|i}\mu(t)\\
&=\sum_{t|\frac{n}{d}}\mu(t)\cdot \lfloor \frac{m}{dt} \rfloor
\end{aligned}
\]

Let's return to \(f[n]\):

\[(m-\lfloor\frac{m}{n}\rfloor)f[n]=m+\sum_{d|n,d\neq n}f[d]\sum_{t|\frac{n}{d}}\mu(t)\cdot \lfloor \frac{m}{dt} \rfloor
\]

Preprocess the divisors of all integer \(x(x\in[1,m])\) and then calculate \(f[n]\) as the equation above directly. Because the number of divisors of most integers is very small ( for integers not more than \(100000\), the maximum is \(128\) and the total number is about \(10^6\) to \(2\times 10^6\)) , so it won't TLE.

At last, the answer is:

\[ans=1+\sum_{i=1}^{m}\frac{f[i]}{m}
\]

Code:

#include <cstdio>
#include <cstring>
#include <cctype>
#include <algorithm>
#include <vector>
using namespace std; namespace zyt
{
typedef long long ll;
const int N = 1e5 + 10, p = 1e9 + 7;
vector<int> fac[N];
int n, f[N], pcnt, prime[N], mu[N];
bool mark[N];
void init()
{
for (int i = 1; i <= n; i++)
for (int j = 1; j * j <= i; j++)
if (i % j == 0)
{
fac[i].push_back(j);
if (j * j != i)
fac[i].push_back(i / j);
}
mu[1] = 1;
for (int i = 2; i <= n; i++)
{
if (!mark[i])
prime[pcnt++] = i, mu[i] = p - 1;
for (int j = 0; j < pcnt && (ll)i * prime[j] <= n; j++)
{
int k = i * prime[j];
mark[k] = true;
if (i % prime[j] == 0)
{
mu[k] = 0;
break;
}
else
mu[k] = p - mu[i];
}
}
}
int power(int a, int b)
{
int ans = 1;
while (b)
{
if (b & 1)
ans = (ll)ans * a % p;
a = (ll)a * a % p;
b >>= 1;
}
return ans;
}
int inv(const int a)
{
return power(a, p - 2);
}
int work()
{
scanf("%d", &n);
init();
f[1] = 0;
int ans = 0;
for (int i = 2; i <= n; i++)
{
for (int j = 0; j < fac[i].size(); j++)
{
int d = fac[i][j];
if (d == i)
continue;
int tmp = 0;
for (int k = 0, size = fac[i / d].size(); k < size; k++)
{
int t = fac[i / d][k];
tmp = (tmp + (ll)mu[t] * (n / d / t) % p) % p;
}
f[i] = (f[i] + (ll)tmp * f[d] % p) % p;
}
f[i] = (ll)(f[i] + n) * inv(n - n / i) % p;
}
for (int i = 1; i <= n; i++)
ans = (ans + f[i]) % p;
printf("%d", int(((ll)ans * inv(n) % p) + 1) % p);
return 0;
}
}
int main()
{
return zyt::work();
}

【Codeforces1139D_CF1139D】Steps to One (Mobius_DP)的更多相关文章

  1. 【CF1139D】Steps to One(动态规划)

    [CF1139D]Steps to One(动态规划) 题面 CF 你有一个数组,每次随机加入一个\([1,n]\)的数,当所有数\(gcd\)为\(1\)时停止,求数组长度的期望. 题解 设\(f[ ...

  2. 【贪心】codeforces D. Minimum number of steps

    http://codeforces.com/contest/805/problem/D [思路] 要使最后的字符串不出现ab字样,贪心的从后面开始更换ab为bba,并且字符串以"abbbb. ...

  3. Python高手之路【三】python基础之函数

    基本数据类型补充: set 是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set object ...

  4. 看懂SqlServer查询计划【转】

    原文链接:http://www.cnblogs.com/fish-li/archive/2011/06/06/2073626.html 开始 SQL Server 查找记录的方法 SQL Server ...

  5. 【故障处理】ORA-28040: No matching authentication protocol

    [故障处理]ORA-28040: No matching authentication protocol 1.1  BLOG文档结构图 1.2  前言部分 1.2.1  导读和注意事项 各位技术爱好者 ...

  6. 【ZZ】 移位贴图 Displacement Mapping

    http://blog.csdn.net/huazai434/article/details/5650629 说明:该技术需要VS3.0的支持!!! 一,移位贴图类似于地形渲染.不过由于移位纹理可以做 ...

  7. 【Android测试】【随笔】模拟双指点击

    ◆版权声明:本文出自胖喵~的博客,转载必须注明出处. 转载请注明出处:http://www.cnblogs.com/by-dream/p/5258660.html 手势 看到这个标题,很多人会想一想 ...

  8. 【转载】看懂SqlServer查询计划

    看懂SqlServer查询计划 阅读目录 开始 SQL Server 查找记录的方法 SQL Server Join 方式 更具体执行过程 索引统计信息:查询计划的选择依据 优化视图查询 推荐阅读-M ...

  9. 【工具】NS2安装记录

    献给同样为了NS2抓破了头皮的同志们. 1, Get Started: http://www.isi.edu/nsnam/ns/ns-build.html#allinone Build by piec ...

随机推荐

  1. 命令行添加PATH

    如何设置PATH 命令:echo "export PATH=xxxxxx:$PATH" >> ~/.bash_profile 解释:把"export PATH ...

  2. c++vector简单实现

    const int DEFAULT_CAP = 3; template <typename T> class vector { // int capacity; T* _data; int ...

  3. javascript模块化编程:CommonJS和AMD规范

    AMD规范,异步模块定义.与CommonJS规范齐名并列. 作用都是利于JavaScript的模块化编程. 模块化编程的好处就是: 1.可重用 2.独立 3.能解决加载的依赖性问题 4.能解决重复加载 ...

  4. 网页 H5“线条” 特效实现方式(canvas-nest)

    先上图 (看博客空白处也可以呦): 前一阵浏览网站的时候,发现了这个好玩的东西,一直想找找怎么实现的,今天忙里偷闲,上网搜了一下,发现实现起来特别简单. 只需要在网页body里引入一个<scri ...

  5. SpringMVC+ajaxFileUpload上传图片 IE浏览器弹下载框问题解决方式

    如题,简单记录一下这个问题的解决的方法,导致问题的核心原因是:ajaxfileupload不支持响应头ContentType为application/json的设置.而且IE也不支持这样的格式,而当我 ...

  6. eclipse 修改代码后无法生效,需要clean后才能生效的解决办法

    勾选project-->Bulid Automatically选项(自动编译)

  7. linux 一个超简单的makefile

    makefile 自动化变量:   $@ : 规则的目标文件名  例如:main:main.o test.o                    g++ -Wall -g  main.o test. ...

  8. glibc CVE-2015-7547漏洞的分析和修复方法【转】

    本文转载自:http://blog.csdn.net/tengxy_cloud/article/details/50764370 漏洞概述 glibc中处理DNS查询的代码中存在栈溢出漏洞,远端攻击者 ...

  9. vue中显示和隐藏导航

    const router = new VueRouter({ mode: 'history', routes: [ { path: '/first', component: firstView, me ...

  10. SILVERLIGHT实现对HTML DOM的访问

    实现对HTML DOM的访问.Silverlight 2在命名空间System.Windows.Browser下内置了很多对于HTML DOM访问和操作的支持,我们最常用的一个对象是HtmlEleme ...