http://acm.hdu.edu.cn/showproblem.php?pid=4407

Sum

Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1551    Accepted Submission(s): 232
Problem Description
XXX is puzzled with the question below:

1, 2, 3, ..., n (1<=n<=400000) are placed in a line. There are m (1<=m<=1000) operations of two kinds.

Operation
1: among the x-th number to the y-th number (inclusive), get the sum of
the numbers which are co-prime with p( 1 <=p <= 400000).
Operation 2: change the x-th number to c( 1 <=c <= 400000).

For each operation, XXX will spend a lot of time to treat it. So he wants to ask you to help him.

 
Input
There are several test cases.
The first line in the input is an integer indicating the number of test cases.
For each case, the first line begins with two integers --- the above mentioned n and m.
Each the following m lines contains an operation.
Operation 1 is in this format: "1 x y p".
Operation 2 is in this format: "2 x c".
 
Output
For each operation 1, output a single integer in one line representing the result.
 
SampleInput
1
3 3
2 2 3
1 1 3 4
1 2 3 6
 
SampleOutput
7
0

给定一个数x可以表示成p = p1i1p2i2...pnin;要求x,x+1,x+2,...y与x互质的数的和,等价于求x,x+1,x+2,...y与p=p1p2...pn互质。(p1,p2,...,pn为素数)

x,x+1,x+2,...y与p互质直接求不好求,所以可以反过来求,先求出与x不互质的数的和sum,然后ans=总的和-sum。

sum[[x,x+1,x+2,...y]与p不互质]=sum[[1,2,...y]与p不互质] - sum[[1,2,x-1]与p不互质],

考虑p的素因子pi,则[1..y]中与pi不互质的数的个数是[y/pi].

然而,如果我们单纯将所有结果相加,有些数就会被统计多次(被好几个素因子整除)。所以,我们要运用容斥原理来解决。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwsAAAA/CAIAAAAgx8PLAAAOaElEQVR4nO2dPe6rOhPGXaS5Ek2a6Nb0V0LKBihYAA0boMgKkNhCxA5oWEAWQMMWvIW0lGyBtxgdxMuH8RcGcp5fdc6fYI8HYj+xx2PWAwAAAACA/4cdbQAAAAAAwOmAQgIAAAAAmAKFBAAAAAAwBQoJAAAAAGAKFBIAAAAAwBR9hcQ5t2iHXc5sGwAAAADOj75CYuy8809ntg0AAAAA5wcKCQAAAABgChQSAAAAAMCUvRRS13XP5/P5fHLOoyhijOV5rl2XXdusc2xjAQAAAGCdvRRSWZZd10VR9Hq9uq7rus6lanGskI5tLAAAAACss+Mc0vgznHPf97XrUsX9HFJ/XGMBAAAAYJ0d45CapomiiP79fr9/eJWtP7SxAAAAALDOjgopz/NBKFCMDq1Gadcoj3uFdGBjAXAJ+8NDiOd5t9uN/T91XR9tPgAAyLKjQoqiaMjc+Hw+7/d7WZba1SnhXiEd2FgAXJKmKcmdLMtkPs85z7Ls8XgwxoIg2Ns8AACwBXb7AwDU8H2fRJJS8vqiKG63W9u2+xk2EMcxEuvvARy7K3CvA5ScDIUEAFCjbVtaQfM8T+nGuq7TNN3JqjFBEMh0gr7vH7vwd7gBqjZIOhYMhGEo/6vgKu/tqVD1htI7DIUEAFCmqiqaRgrDUPXGnUwaI9MJFkXBGHNjzzkN0LABCkkVJY9d4r09FRregEI6tW0AWMTNotUicRyTSDphZy3TCYZhKB9NNYZzHobhEJMeBIGeB7QNONAGKCRVrCskk9emt/fmmGPFEg1vHKmQlPIAjaOb7QKFBP4Sjs28RfHXzqKL5NnsBLMsa9uWMRbHsVLJcRz7vj/uyuu6DsNQ9UFoG3CsDVBIqthVSCavTW/vzTHHiiV63jhSISlJE8bYTvvhd1VIzICmafYz7HDgGfccq5A45/T4Ho/HgWbMEXeCnHMKXGCKq4RFUax9Pssy+aK0DTjcBigkVSwqJJPXprf35phjxRJtb1xJIalW+n6/v9/vHiUr2aA0qHPO3+/38/lkjL1er8XPPJ9Pyaplmi9ZmnX28Mwmdl23H/IGKD2+w7O3UxwA0/1RuxPiTnD45ep5npIDH4+HYLZMXiZqG3C4DVBIqlhUSCavTW/vzTHHiiXa3vhlheT7vszou6tC6vuejqe93+9Kc2Cfz+d+vy8Ok5IGn6T5Aqx7ZhO7rtsPeQOUHt/hCqn/EwrAzhSQJOgEx9tefN9XGhjEH5bseU0MONwGKCRVbCkkw9emt/TmWMHcEhNv/KxCyvNccn5ib4nQdd39fmeMDSeNSEKzJvO/yxh8nuYLsO6ZTey6bieUDLicQur73vM8dqaAJEEnOP57EAS3202+WCtjjIkBh9sAhSQmCIJJcvnb7eZ53uSPa7vTd3pviV9SSCbe+E2F9P1+kyRhjMkceeZAIjRNQ7+bVY9gW8y1vWnw2ZovwK5nNrHruglN0yRJQpqPMZYkiYaRqgZcUSHVdU0uchnNIGCtE6QohwGKNJ98pq7rtTxP5j27jAFDaYs7dBzY0LZtGIaLTtgMlBEjL6ApxG0xCbuzS4Jb5LEyhyT52ojr0ntzrHtb25IB+S+RXvljLqOQ8jzvuu5UEoEmBqxMTmwafMLmC7DomU3sum7M6/V6Pp/j8/U+n08URaohU6oGCFq0+At18pejNFMcxyefQ5qP0FmWMcbmNq91oIY9u7wBh9uwFjArnuQItpDPF8o5v91uizY4uyS4RR5zhSTzyIqiSNP0drvtoZDselvbkqFk+S+RRvkTrqGQmqah3+6SIb3OJAJFGauG3cwRG3za5guw5ZlN7LpuIM/zJEkWLyVJIi+2NAy44hxS27ae550nz+9iJzgPk6Iwc3mzDdWJuQHObPB9vygKjfLBBHOFJP/a7KGQ9sDEEvMv0Q8qpGFo8X1fJsDFmUT4fr+0BLM2mkoiNvi0zRdgyzOb2HXdgO/7a5Hj3+9XXpdoGHBFhfR4PBYH1KOYd4KL5tHi4LjPTdM0CIK13takZ5c0oO/7LMuyLNtjhULeBpoOrOuaTh2WLB/MMVRI8o+s/wsUkow32rZN05SOIsmyLE3TyVTWrymkPM+HxZoois4mET6fD60o6QUaEwKDT958AVY8s4ld18kUu3nV0IDLKSTf992ctibPpBPknC8mI6BoiSHchxLQBUGwpva0e3ZJA/q+r6qKCll7DRzYUNf14/Goqqqua3KITPlgEROFJP/IiN9WSPLf4r7vPc8bOqXJV+mnFNL3+x2vaERRdL/fDUumBSAxMrUMvF4vukv7DVszeI/mu8TcM5vYdd1msTJXDQ24lkKiYMljbZgzdIIUHMMYu91uE90TxzHFeHqeR02gUAbBvhiNnl3JgMGGqqrW6nJgQ5qm9N95bAcUkhhbe9lUHxnxqwpJ9VtMR2sP9072HPyUQsrzfLzYQSHA889MxgnHEqHrOlJdvu/rhd2sGXxI8y1GDpl7ZhO7rtssVuaqvAF938/3x11IIWVZdrhEW0S7uxen9BUnfLKYDiqO47UMnA5soOMg6rqmYWask6CQdsXQvWKF5Ozt3WRvS4qiGPqlNE0nX6XfUUjDvvEJm2Ot+0kU/uf4BY0t5f2KwTs1f9i7vobdlNyGntnEruvExUpeNTRA6e013IpsQlVVnuepbl5zsx6nPdLQ7/uiKI7dlDc5ssoxw+9vehXHqzlQSLuyq0L6ewjDcOhnPM/jnGu/w6dWSFEUTaJlKbRlcw+5uGSZVTaNX8Z5nt/vd70XdNHgnZrvHhPPbGLXdeJiJa8aGnC2x7cIzV2rPtM0TbXPJFdCe6ShvvXwqPMD3wHO+dD70f788ZIQFNKuaLu3qqo0TRljYRge/vYeju/7gxspr9j498aPKKT3+z1vBuWVGQ8zURTN5zzc9y9d142fiipzg6/VfAGGntnErusExcpflTSA1t3mKQBO9fgW0djbT+MuU0lbYsKlB3IKlD7aimUu7djzA/c64BcUEud8bVHG9/1hb1RZlpzz5/M5WbxwPMZQtI1eSmhiYvC1mi/A3DOb2HXdWrHyVyUN+Hw+Q54kparPwOPxCMOwFlJVVVEUFNZDZ5Iw4/TE8oRheMWRhkKg4jg+297AgYs69irAvQ5QcvIZFdLr9aJYmclIM2RqZn/2mtHwNk9L6HiMeb1ehkE2Y4Mv13wB5p7ZxK7rFouVv6pqQNM08xQA53l8i9CmEj3Oc7TtCaGZuXlgKQDgKCwrJPkT2imjoHbtA2VZznMSuhxjBMmX5dE2+PDmC7DimU3sus4xeZ7PFeRJHt8a4qkjMUfbDgAAClhWSEmSSKYHtDU+RVHUNM37/R4rM2djTFmWgpUaebQNPrb5Amx5ZhO7rnMM2TD54xkeHwAAAMsKqWkaycw3vu9bCU+JoogxZpJRRpumaeTnzAYWV51Mhvmjmi/Aomc2ses6x5gvVQMAANgJywqp7/skSTZP6Mzz3G7SnQkOxhjOucYO9rIsF4dkuwYfO8Ta9cwm19UTi0FI/ZVbBAAAv4R9hUTbl5IkWZtJouw4uy5t7D3G0A52pRH9+/0mSbIWGmw3MfGBaY6te2aTc+Z0FkPrj2u7/K7YInn0grUR4g0AcI99hdT3fdd1tKlnfHLn9/sty9L3/efzuXfkx64KicY2mSWh7/fbNA1NmNFens3ZtUsDz0hCZ7TtvctvQl3Xk/OJJlBqtfFf2ralvfq2aqECZaoW3KVhFQAAaLCLQiIoMcwwBN7v9/kRVDuxq0IaTmPV4LdzXcAzJ0fs5MWr4nPKVGuJ43jt1G5BgfO7NKwCAABVdlRIB3Jm2wC4EL7v2zrEgHOukeln8S6LVgEAwBpQSAD8PmmaBkGwlpEoy7IsyxYTXt9ut7Zt67rOsmxyFEYQBJOJHHEtYRjOjxwRVC24S2AVAADYAgoJgB8ny7K2bYMgWJx3qaqK1rDm3xo6IKyqqrquqYTJjWMxNKmFooUG/vvvv3///Xf4L4meedUyd4mtAgAAW0AhgdPhOIT55yFhcbvdBFerqppPxqRp6nne4iyOai2LOkZQteAuJasAAEAbawopz3OlXcq0x1u7djF7K6RTNdYl4oZLRuKLC+m6blEhOQvz/0k2Q5vjOF4M96GpGtI9m4pkrRY6wlapasFdqlYBAIAex8wh0Wi3n4451RzS3o39MfI8P/AYkF/l8XjUdV0UxTBtM4kWItkxuTRMCNHbO9Er80LGtdB6WRAEQRD8888/wYjJ9M9Qdf9nlU18l9gqAACwxZGrbH+JQiJOaNIJ+X6/WGLbgzAM0zQd4pCCIJgsbA3v53CJcz5M9QVBkKbpRA/NI7UntRBZlonzPS5+Ndbu2rQKAABsYUchRVGkcYrIRRXS2RrrDEHD8zxnS1kf558Xe+/1es0za68VDkwYT71Q7PPiJXPEkdSTqiXvAgAAB1hQSGVZcs7HB7nf7/fFrID3+32xBOvsV/IJG+uGecMHPp8PRQjN2zhZL9PwnqBwYALJIJoEiuM4TdPJJSvEcSzY/D+vevMuAABwhgWFRKOdxrlaV1RIJ2ysGwQNp7+sncMqWUi/MoEkXziQpygKznnbtp7npWk6DpSmS7YqWksRuVj15l0AAOASO6tsZVlq7NW6okLqz9dYZ4gbnue5TAjRWiHDXJFJ4QAAAIAtrMUhNU3zfr9pVeXwhae945BO1VhnTBq+eFW1EEnvSRYOAAAA2MKaQmKMyaerobPNh+FQ2wYZ26xztsY6Y9zwJEkmOY0WmxZF0WThbNF7ZVmKBdCl/QYAAOCK6A88Zz6M/cy2/QzjaR6TOKGu68SrlghCAgAA4B78NAc6DFnCaWPa8/nUTnid5/maojUvHAAAANADCgnoMAQS0RqiSRi14F7zwgEAAAA9oJAAAAAAAKZAIQEAAAAATIFCAgAAAACY8j/6U7IwN5IvcAAAAABJRU5ErkJggg==" alt="" />

http://zh.wikipedia.org/wiki/容斥原理

比如要求[1,2,...,10]和10不互质的和,10=2*5,与2不互质的有2,4,6,8,10,与5不互质的有5,10;但还要减去与2*5不互质10;每个与pi不互质的是一个等差数列,

所以等差数列求和即可。

(因为m最多1000,所以修改的数不多,所以后面对修改的数单独处理就ok了。)

第一步要求x的所有因子。

第二步运用容斥原理,奇数项加,偶数项减。

再枚举修改的值就差不多了。

n<=400000,所以ans可能会超int

 int size;//因子个数
int yinzi[];
void get_yinzi(int n)
{
size = ;
if (!(n & ))//为偶数
{
yinzi[size++] = ;
while (n /= , !(n & ));
}
int i, sqrtn = (sqrt(1.0 * n) + 0.5);
for (i = ; i <= sqrtn; i += )
{
if (n % i == )
{
yinzi[size++] = i;
while (n /= i, n % i == );
}
if (n == )
return;
}
if (n > )
yinzi[size++] = n;
}
//详见大牛博客http://www.cnblogs.com/xin-hua/p/3213050.html
1 #define llt long long int
llt solve(int r)//容斥原理,二进制法,总共有2size-1项
{
llt sum = ;
int bits;//1的个数,奇数加,偶数减
int pi;//
int i, j = << size, t;
int k;//选中的第几个因子
for (i = ; i < j; i++)//看i的二进制表示,假设size=4,i=1011,表示yinzi[3]∩yinzi[1]∩yinzi[0]即pi = yinzi[3]*yinzi[1]*yinzi[0]
{
pi = ;
t = i;
k = bits = ;
while (t)
{
if (t & )
{
pi *= yinzi[k];
bits++;
}
k++;
t >>= ;
}
t = r / pi;
if (bits & )//等差数列求和
sum += 1ll * (pi + pi * t) * t / ;
else
sum -= 1ll * (pi + pi * t) * t / ;
}
return sum;
}
 int gcd(int a, int b)
{
return b ? gcd (b, a % b) : a;
} llt sum(int n)
{
return 1ll * ( + n) * n / ;
}
map<int, int> mp;//使用map对修改的数进行操作
map<int,int>::iterator it;
int main()
{
int tests, n, m, i, op, x, y, p, c;
llt ans;
scanf("%d", &tests);
while (tests--)
{
mp.clear();
scanf("%d%d", &n, &m);
while (m--)
{
scanf("%d", &op);
if (op == )
{
ans = ;
scanf("%d%d%d", &x, &y, &p);
if (x > y)
swap(x, y);
get_yinzi(p);
for (it = mp.begin(); it != mp.end(); it++)
{
if (it->first != it->second && it->first >= x && it->first <= y)
{
ans -= gcd(it->first, p) == ? it->first : ;
ans += gcd(it->second, p) == ? it->second : ;
}
}
printf("%I64d\n", ans + sum(y) - sum(x - ) - solve(y) + solve(x - ));
}
else
{
scanf("%d%d", &x, &c);
mp[x] = c;
}
}
}
return ;
}

hdu4407Sum(容斥原理)的更多相关文章

  1. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  2. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  5. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  6. HDU5838 Mountain(状压DP + 容斥原理)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...

  7. 【BZOJ-2669】局部极小值 状压DP + 容斥原理

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 561  Solved: 293[Submit][Status ...

  8. HDU 2204Eddy's爱好(容斥原理)

    Eddy's爱好 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  9. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

随机推荐

  1. 鸟哥私房菜基础篇:Linux是什么习题

    猫宁!!! 参考链接:http://cn.linux.vbird.org/linux_basic/0110whatislinux.php#ex 鸟哥是为中国信息技术发展做出巨大贡献的人. 1-你在你的 ...

  2. Almost Acyclic Graph Codeforces - 915D

    以前做过的题都不会了.... 此题做法:优化的暴力 有一个显然的暴力:枚举每一条边试着删掉 注意到题目要求使得图无环,那么找出图上任意一个环,都应当要在其某一处断开(当然没有环是YES) 因此找出图中 ...

  3. h5-16-插入SVG图片

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  4. HAL之PWM

    PWM是定时器的一个输出功能,要分配在有对应输出的管脚上.分频和定时值决定了周期,捕获寄存器的值就是占空比,当计数寄存器的值小于捕获值时输出固定电平(H),当大于时翻转电平,当计数器值溢出时将重载值载 ...

  5. windows 7 正确禁用 IPv6

    与Windows XP和Windows Server 2003不同的是,Windows Vista和Windows Server 2008中的IPv6无法被卸载.然而,在Windows Vista和W ...

  6. C#局部类型partial在定义实体类Model中的应用

    以前一直用继承类的方法,原来还可以这样 //例如:定义一个Person的实体类,用户ID(PersonId),姓名(Name),性别(Sex),年龄(Age),地址(Address),联系方式(Tel ...

  7. Android开发精品收藏贴

    各种下拉刷新效果: https://github.com/scwang90/SmartRefreshLayout

  8. Android学习笔记(十九) OkHttp

    一.概述 根据我的理解,OkHttp是为了方便访问网络或者获取服务器的资源,而封装出来的一个工具包.通常的使用步骤是:首先初始化一个OkHttpClient对象,然后使用builder模式构造一个Re ...

  9. SEO 第一章

    SEO  第一章 第一章:SEO基础知识 第二章:搜索引擎基础 第三章:关键词分析 第四章:TDK优化 第五章:网站的URL优化 第六章:网站的内链优化 第七章:代码优化 第八章:网站的内容优化 第九 ...

  10. uva1610 Party Games

    细节值得注意 注意vector<string>是可以直接sort的! #include <iostream> #include <string> #include ...