http://acm.hdu.edu.cn/showproblem.php?pid=4407

Sum

Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1551    Accepted Submission(s): 232
Problem Description
XXX is puzzled with the question below:

1, 2, 3, ..., n (1<=n<=400000) are placed in a line. There are m (1<=m<=1000) operations of two kinds.

Operation
1: among the x-th number to the y-th number (inclusive), get the sum of
the numbers which are co-prime with p( 1 <=p <= 400000).
Operation 2: change the x-th number to c( 1 <=c <= 400000).

For each operation, XXX will spend a lot of time to treat it. So he wants to ask you to help him.

 
Input
There are several test cases.
The first line in the input is an integer indicating the number of test cases.
For each case, the first line begins with two integers --- the above mentioned n and m.
Each the following m lines contains an operation.
Operation 1 is in this format: "1 x y p".
Operation 2 is in this format: "2 x c".
 
Output
For each operation 1, output a single integer in one line representing the result.
 
SampleInput
1
3 3
2 2 3
1 1 3 4
1 2 3 6
 
SampleOutput
7
0

给定一个数x可以表示成p = p1i1p2i2...pnin;要求x,x+1,x+2,...y与x互质的数的和,等价于求x,x+1,x+2,...y与p=p1p2...pn互质。(p1,p2,...,pn为素数)

x,x+1,x+2,...y与p互质直接求不好求,所以可以反过来求,先求出与x不互质的数的和sum,然后ans=总的和-sum。

sum[[x,x+1,x+2,...y]与p不互质]=sum[[1,2,...y]与p不互质] - sum[[1,2,x-1]与p不互质],

考虑p的素因子pi,则[1..y]中与pi不互质的数的个数是[y/pi].

然而,如果我们单纯将所有结果相加,有些数就会被统计多次(被好几个素因子整除)。所以,我们要运用容斥原理来解决。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwsAAAA/CAIAAAAgx8PLAAAOaElEQVR4nO2dPe6rOhPGXaS5Ek2a6Nb0V0LKBihYAA0boMgKkNhCxA5oWEAWQMMWvIW0lGyBtxgdxMuH8RcGcp5fdc6fYI8HYj+xx2PWAwAAAACA/4cdbQAAAAAAwOmAQgIAAAAAmAKFBAAAAAAwBQoJAAAAAGAKFBIAAAAAwBR9hcQ5t2iHXc5sGwAAAADOj75CYuy8809ntg0AAAAA5wcKCQAAAABgChQSAAAAAMCUvRRS13XP5/P5fHLOoyhijOV5rl2XXdusc2xjAQAAAGCdvRRSWZZd10VR9Hq9uq7rus6lanGskI5tLAAAAACss+Mc0vgznHPf97XrUsX9HFJ/XGMBAAAAYJ0d45CapomiiP79fr9/eJWtP7SxAAAAALDOjgopz/NBKFCMDq1Gadcoj3uFdGBjAXAJ+8NDiOd5t9uN/T91XR9tPgAAyLKjQoqiaMjc+Hw+7/d7WZba1SnhXiEd2FgAXJKmKcmdLMtkPs85z7Ls8XgwxoIg2Ns8AACwBXb7AwDU8H2fRJJS8vqiKG63W9u2+xk2EMcxEuvvARy7K3CvA5ScDIUEAFCjbVtaQfM8T+nGuq7TNN3JqjFBEMh0gr7vH7vwd7gBqjZIOhYMhGEo/6vgKu/tqVD1htI7DIUEAFCmqiqaRgrDUPXGnUwaI9MJFkXBGHNjzzkN0LABCkkVJY9d4r09FRregEI6tW0AWMTNotUicRyTSDphZy3TCYZhKB9NNYZzHobhEJMeBIGeB7QNONAGKCRVrCskk9emt/fmmGPFEg1vHKmQlPIAjaOb7QKFBP4Sjs28RfHXzqKL5NnsBLMsa9uWMRbHsVLJcRz7vj/uyuu6DsNQ9UFoG3CsDVBIqthVSCavTW/vzTHHiiV63jhSISlJE8bYTvvhd1VIzICmafYz7HDgGfccq5A45/T4Ho/HgWbMEXeCnHMKXGCKq4RFUax9Pssy+aK0DTjcBigkVSwqJJPXprf35phjxRJtb1xJIalW+n6/v9/vHiUr2aA0qHPO3+/38/lkjL1er8XPPJ9Pyaplmi9ZmnX28Mwmdl23H/IGKD2+w7O3UxwA0/1RuxPiTnD45ep5npIDH4+HYLZMXiZqG3C4DVBIqlhUSCavTW/vzTHHiiXa3vhlheT7vszou6tC6vuejqe93+9Kc2Cfz+d+vy8Ok5IGn6T5Aqx7ZhO7rtsPeQOUHt/hCqn/EwrAzhSQJOgEx9tefN9XGhjEH5bseU0MONwGKCRVbCkkw9emt/TmWMHcEhNv/KxCyvNccn5ib4nQdd39fmeMDSeNSEKzJvO/yxh8nuYLsO6ZTey6bieUDLicQur73vM8dqaAJEEnOP57EAS3202+WCtjjIkBh9sAhSQmCIJJcvnb7eZ53uSPa7vTd3pviV9SSCbe+E2F9P1+kyRhjMkceeZAIjRNQ7+bVY9gW8y1vWnw2ZovwK5nNrHruglN0yRJQpqPMZYkiYaRqgZcUSHVdU0uchnNIGCtE6QohwGKNJ98pq7rtTxP5j27jAFDaYs7dBzY0LZtGIaLTtgMlBEjL6ApxG0xCbuzS4Jb5LEyhyT52ojr0ntzrHtb25IB+S+RXvljLqOQ8jzvuu5UEoEmBqxMTmwafMLmC7DomU3sum7M6/V6Pp/j8/U+n08URaohU6oGCFq0+At18pejNFMcxyefQ5qP0FmWMcbmNq91oIY9u7wBh9uwFjArnuQItpDPF8o5v91uizY4uyS4RR5zhSTzyIqiSNP0drvtoZDselvbkqFk+S+RRvkTrqGQmqah3+6SIb3OJAJFGauG3cwRG3za5guw5ZlN7LpuIM/zJEkWLyVJIi+2NAy44hxS27ae550nz+9iJzgPk6Iwc3mzDdWJuQHObPB9vygKjfLBBHOFJP/a7KGQ9sDEEvMv0Q8qpGFo8X1fJsDFmUT4fr+0BLM2mkoiNvi0zRdgyzOb2HXdgO/7a5Hj3+9XXpdoGHBFhfR4PBYH1KOYd4KL5tHi4LjPTdM0CIK13takZ5c0oO/7LMuyLNtjhULeBpoOrOuaTh2WLB/MMVRI8o+s/wsUkow32rZN05SOIsmyLE3TyVTWrymkPM+HxZoois4mET6fD60o6QUaEwKDT958AVY8s4ld18kUu3nV0IDLKSTf992ctibPpBPknC8mI6BoiSHchxLQBUGwpva0e3ZJA/q+r6qKCll7DRzYUNf14/Goqqqua3KITPlgEROFJP/IiN9WSPLf4r7vPc8bOqXJV+mnFNL3+x2vaERRdL/fDUumBSAxMrUMvF4vukv7DVszeI/mu8TcM5vYdd1msTJXDQ24lkKiYMljbZgzdIIUHMMYu91uE90TxzHFeHqeR02gUAbBvhiNnl3JgMGGqqrW6nJgQ5qm9N95bAcUkhhbe9lUHxnxqwpJ9VtMR2sP9072HPyUQsrzfLzYQSHA889MxgnHEqHrOlJdvu/rhd2sGXxI8y1GDpl7ZhO7rtssVuaqvAF938/3x11IIWVZdrhEW0S7uxen9BUnfLKYDiqO47UMnA5soOMg6rqmYWask6CQdsXQvWKF5Ozt3WRvS4qiGPqlNE0nX6XfUUjDvvEJm2Ot+0kU/uf4BY0t5f2KwTs1f9i7vobdlNyGntnEruvExUpeNTRA6e013IpsQlVVnuepbl5zsx6nPdLQ7/uiKI7dlDc5ssoxw+9vehXHqzlQSLuyq0L6ewjDcOhnPM/jnGu/w6dWSFEUTaJlKbRlcw+5uGSZVTaNX8Z5nt/vd70XdNHgnZrvHhPPbGLXdeJiJa8aGnC2x7cIzV2rPtM0TbXPJFdCe6ShvvXwqPMD3wHO+dD70f788ZIQFNKuaLu3qqo0TRljYRge/vYeju/7gxspr9j498aPKKT3+z1vBuWVGQ8zURTN5zzc9y9d142fiipzg6/VfAGGntnErusExcpflTSA1t3mKQBO9fgW0djbT+MuU0lbYsKlB3IKlD7aimUu7djzA/c64BcUEud8bVHG9/1hb1RZlpzz5/M5WbxwPMZQtI1eSmhiYvC1mi/A3DOb2HXdWrHyVyUN+Hw+Q54kparPwOPxCMOwFlJVVVEUFNZDZ5Iw4/TE8oRheMWRhkKg4jg+297AgYs69irAvQ5QcvIZFdLr9aJYmclIM2RqZn/2mtHwNk9L6HiMeb1ehkE2Y4Mv13wB5p7ZxK7rFouVv6pqQNM08xQA53l8i9CmEj3Oc7TtCaGZuXlgKQDgKCwrJPkT2imjoHbtA2VZznMSuhxjBMmX5dE2+PDmC7DimU3sus4xeZ7PFeRJHt8a4qkjMUfbDgAAClhWSEmSSKYHtDU+RVHUNM37/R4rM2djTFmWgpUaebQNPrb5Amx5ZhO7rnMM2TD54xkeHwAAAMsKqWkaycw3vu9bCU+JoogxZpJRRpumaeTnzAYWV51Mhvmjmi/Aomc2ses6x5gvVQMAANgJywqp7/skSTZP6Mzz3G7SnQkOxhjOucYO9rIsF4dkuwYfO8Ta9cwm19UTi0FI/ZVbBAAAv4R9hUTbl5IkWZtJouw4uy5t7D3G0A52pRH9+/0mSbIWGmw3MfGBaY6te2aTc+Z0FkPrj2u7/K7YInn0grUR4g0AcI99hdT3fdd1tKlnfHLn9/sty9L3/efzuXfkx64KicY2mSWh7/fbNA1NmNFens3ZtUsDz0hCZ7TtvctvQl3Xk/OJJlBqtfFf2ralvfq2aqECZaoW3KVhFQAAaLCLQiIoMcwwBN7v9/kRVDuxq0IaTmPV4LdzXcAzJ0fs5MWr4nPKVGuJ43jt1G5BgfO7NKwCAABVdlRIB3Jm2wC4EL7v2zrEgHOukeln8S6LVgEAwBpQSAD8PmmaBkGwlpEoy7IsyxYTXt9ut7Zt67rOsmxyFEYQBJOJHHEtYRjOjxwRVC24S2AVAADYAgoJgB8ny7K2bYMgWJx3qaqK1rDm3xo6IKyqqrquqYTJjWMxNKmFooUG/vvvv3///Xf4L4meedUyd4mtAgAAW0AhgdPhOIT55yFhcbvdBFerqppPxqRp6nne4iyOai2LOkZQteAuJasAAEAbawopz3OlXcq0x1u7djF7K6RTNdYl4oZLRuKLC+m6blEhOQvz/0k2Q5vjOF4M96GpGtI9m4pkrRY6wlapasFdqlYBAIAex8wh0Wi3n4451RzS3o39MfI8P/AYkF/l8XjUdV0UxTBtM4kWItkxuTRMCNHbO9Er80LGtdB6WRAEQRD8888/wYjJ9M9Qdf9nlU18l9gqAACwxZGrbH+JQiJOaNIJ+X6/WGLbgzAM0zQd4pCCIJgsbA3v53CJcz5M9QVBkKbpRA/NI7UntRBZlonzPS5+Ndbu2rQKAABsYUchRVGkcYrIRRXS2RrrDEHD8zxnS1kf558Xe+/1es0za68VDkwYT71Q7PPiJXPEkdSTqiXvAgAAB1hQSGVZcs7HB7nf7/fFrID3+32xBOvsV/IJG+uGecMHPp8PRQjN2zhZL9PwnqBwYALJIJoEiuM4TdPJJSvEcSzY/D+vevMuAABwhgWFRKOdxrlaV1RIJ2ysGwQNp7+sncMqWUi/MoEkXziQpygKznnbtp7npWk6DpSmS7YqWksRuVj15l0AAOASO6tsZVlq7NW6okLqz9dYZ4gbnue5TAjRWiHDXJFJ4QAAAIAtrMUhNU3zfr9pVeXwhae945BO1VhnTBq+eFW1EEnvSRYOAAAA2MKaQmKMyaerobPNh+FQ2wYZ26xztsY6Y9zwJEkmOY0WmxZF0WThbNF7ZVmKBdCl/QYAAOCK6A88Zz6M/cy2/QzjaR6TOKGu68SrlghCAgAA4B78NAc6DFnCaWPa8/nUTnid5/maojUvHAAAANADCgnoMAQS0RqiSRi14F7zwgEAAAA9oJAAAAAAAKZAIQEAAAAATIFCAgAAAACY8j/6U7IwN5IvcAAAAABJRU5ErkJggg==" alt="" />

http://zh.wikipedia.org/wiki/容斥原理

比如要求[1,2,...,10]和10不互质的和,10=2*5,与2不互质的有2,4,6,8,10,与5不互质的有5,10;但还要减去与2*5不互质10;每个与pi不互质的是一个等差数列,

所以等差数列求和即可。

(因为m最多1000,所以修改的数不多,所以后面对修改的数单独处理就ok了。)

第一步要求x的所有因子。

第二步运用容斥原理,奇数项加,偶数项减。

再枚举修改的值就差不多了。

n<=400000,所以ans可能会超int

 int size;//因子个数
int yinzi[];
void get_yinzi(int n)
{
size = ;
if (!(n & ))//为偶数
{
yinzi[size++] = ;
while (n /= , !(n & ));
}
int i, sqrtn = (sqrt(1.0 * n) + 0.5);
for (i = ; i <= sqrtn; i += )
{
if (n % i == )
{
yinzi[size++] = i;
while (n /= i, n % i == );
}
if (n == )
return;
}
if (n > )
yinzi[size++] = n;
}
//详见大牛博客http://www.cnblogs.com/xin-hua/p/3213050.html
1 #define llt long long int
llt solve(int r)//容斥原理,二进制法,总共有2size-1项
{
llt sum = ;
int bits;//1的个数,奇数加,偶数减
int pi;//
int i, j = << size, t;
int k;//选中的第几个因子
for (i = ; i < j; i++)//看i的二进制表示,假设size=4,i=1011,表示yinzi[3]∩yinzi[1]∩yinzi[0]即pi = yinzi[3]*yinzi[1]*yinzi[0]
{
pi = ;
t = i;
k = bits = ;
while (t)
{
if (t & )
{
pi *= yinzi[k];
bits++;
}
k++;
t >>= ;
}
t = r / pi;
if (bits & )//等差数列求和
sum += 1ll * (pi + pi * t) * t / ;
else
sum -= 1ll * (pi + pi * t) * t / ;
}
return sum;
}
 int gcd(int a, int b)
{
return b ? gcd (b, a % b) : a;
} llt sum(int n)
{
return 1ll * ( + n) * n / ;
}
map<int, int> mp;//使用map对修改的数进行操作
map<int,int>::iterator it;
int main()
{
int tests, n, m, i, op, x, y, p, c;
llt ans;
scanf("%d", &tests);
while (tests--)
{
mp.clear();
scanf("%d%d", &n, &m);
while (m--)
{
scanf("%d", &op);
if (op == )
{
ans = ;
scanf("%d%d%d", &x, &y, &p);
if (x > y)
swap(x, y);
get_yinzi(p);
for (it = mp.begin(); it != mp.end(); it++)
{
if (it->first != it->second && it->first >= x && it->first <= y)
{
ans -= gcd(it->first, p) == ? it->first : ;
ans += gcd(it->second, p) == ? it->second : ;
}
}
printf("%I64d\n", ans + sum(y) - sum(x - ) - solve(y) + solve(x - ));
}
else
{
scanf("%d%d", &x, &c);
mp[x] = c;
}
}
}
return ;
}

hdu4407Sum(容斥原理)的更多相关文章

  1. hdu4059 The Boss on Mars(差分+容斥原理)

    题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设  则    为一阶差分. 二阶差分: n阶差分:     且可推出    性质: 1. ...

  2. hdu2848 Visible Trees (容斥原理)

    题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...

  3. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  4. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

  5. ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)

    二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...

  6. HDU5838 Mountain(状压DP + 容斥原理)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5838 Description Zhu found a map which is a N∗M ...

  7. 【BZOJ-2669】局部极小值 状压DP + 容斥原理

    2669: [cqoi2012]局部极小值 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 561  Solved: 293[Submit][Status ...

  8. HDU 2204Eddy's爱好(容斥原理)

    Eddy's爱好 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Sta ...

  9. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

随机推荐

  1. (2)javascript的基本语法、数据结构、变量

    本篇学习资料主要讲解javascript的基本语法.数据结构.变量      无论是传统的编程语言,还是脚本语言,都具有数据类型.常量和变量.运算符.表达式.注释语句.流程控制语句等基本元素构成,这些 ...

  2. 园艺研究生中途自学Java,赶上校招终进美团,分享面试经验

    前言 最近,圈子里的很多小伙伴都在面试,有些小伙伴儿拿到不错的offer,今天给大家推荐的这位小伙伴拿到美团点评的校招offer,他将自己这次面试的经历写下来供大家参考,看看你能回答多少? 背景 上海 ...

  3. 鸟哥私房菜基础篇:认识与学习BASH习题

    猫宁!!! 参考链接:http://linux.vbird.org/linux_basic/0320bash.php 鸟哥是为中国信息技术发展做出巨大贡献的人. 1-在 Linux 上可以找到哪些 s ...

  4. Hibernate中的Query对象查询所有记录

    映射文件,核心文件,实体类,工具类的内容都不变直接看测试方法中的代码: package com.yinfu.test; import java.util.List; import org.hibern ...

  5. 接口测试postman和Jmeter

    接口测试属于功能测试的范畴,一般来说分为两种,一种是程序内部的接口,一种是系统对外的接口. postman测试接口 1. get请求: (1) 直接在浏览器中输入接口地址+?+参数 (2)使用post ...

  6. python实现计数排序

    计数排序有局限性,最小值和最大值决定着数组的长度,如果分配均匀的话可以用 # @File: count_sort import random def count_sort(li, max_num=10 ...

  7. magento优化之模板静态化

    最近首页很慢,运行magento profile检查的时候,发现首页某个templat运行时间占了一半,大概6s. 用magento自带的缓存,尝试把代码中的collection缓存起来,但不知道为啥 ...

  8. JAVA常用设计模式(静态化调用和实例化调用的区别,编辑可见 )

    用newInstance()与用new是区别的,区别在于创建对象的方式不一样,前者是使用类加载机制,后者是创建一个新类,且newInstance()只能调用无参构造函数. 最大的区别在于内存.静态方法 ...

  9. RHEL6.5、RHEL7.2忘记ROOT密码恢复小结

    RHEL6.5忘记root密码恢复步骤 RHEL7.2恢复密码步骤 5.耐心等待重启完成即可实现重置root密码 也可以按如下做法 依次执行chroot /sysroot/,passwd===> ...

  10. 可能是最漂亮的Spring事务管理详解 专题

    微信阅读地址链接:可能是最漂亮的Spring事务管理详解 事务概念回顾 什么是事务? 事务是逻辑上的一组操作,要么都执行,要么都不执行. 事物的特性(ACID): 原子性: 事务是最小的执行单位,不允 ...