(多项式的)因式分解定理(factor theorem)是多项式剩余定理的特殊情况,也就是余项为 0 的情形。

0. 多项式长除法(Polynomial long division)

Polynomial long division - Wikipedia

1. 因式分解定理

Factor theorem

该定理表达的是,多项式 f(x) 存在因子 x−k 当且仅当 f(k)=0(余数为 0,也即 k 是其根)。

对于多项式 f(x)=x3+7x2+8x+2,

  • x−1 是否为其因子?f(1)≠0
  • x+1 是否为其因子?f(−1)=0,故为其因子;

(多项式除法)又有 x3+7x2+8x+2x+1=x2+6x+2,因此 x+1 与 x2+6x+2 均为其因子。

2. 多项式余项定理

Polynomial remainder theorem

举例对于多项式 f(x)=x3−12x2−42,当除数为 x−3 时,商为 x2−9x−27,余项为 −123。也即,f(x)=(x−3)(x2−9x−27)−123。因此 f(3)=−123。

更为一般地,对于二次多项式 f(x)=ax2+bx+c,有如下的等式变换:

f(x)x−r=ax2+bx+cx−r=ax2−arx+arx+bx+cx−r=ax(x−r)+(b+ar)x+cx−r=ax+(b+ar)(x−r)+c+r(b+ar)x−r=ax+b+ar+c+r(b+ar)x−r=ax+b+ar+ar2+br+cx−r

所以:

f(x)=(x−r)(ax+b+ar)+ar2+br+c

(多项式)因式分解定理(Factor theorem)与多项式剩余定理(Polynomial remainder theorem)(多项式长除法)的更多相关文章

  1. DHU 1788 Chinese remainder theorem again 中国剩余定理

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  2. HDU 1788 Chinese remainder theorem again 中国剩余定理

    题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...

  3. 2019牛客暑期多校训练营(第七场)D Number——实系数多项式因式分解定理

    前置知识 代数基本定理 定理:每个次数 ≥ 1 复系数多项式在复数域中至少有一个跟. 由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算).(只要不断把多项式除以(x-xa),即可 ...

  4. hdu 1788 Chinese remainder theorem again(最小公倍数)

    Problem Description 我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的: 假设m1,m2,-,mk两两互素,则下面同余方程组: x≡a1(mod m1) x≡a2( ...

  5. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  6. 《孙子算经》之"物不知数"题:中国剩余定理

    1.<孙子算经>之"物不知数"题 今有物不知其数,三三数之剩二,五五数之剩七,七七数之剩二,问物几何? 2.中国剩余定理 定义: 设 a,b,m 都是整数.  如果 m ...

  7. POJ 1006 中国剩余定理

    #include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(sca ...

  8. [TCO 2012 Round 3A Level3] CowsMooing (数论,中国剩余定理,同余方程)

    题目:http://community.topcoder.com/stat?c=problem_statement&pm=12083 这道题还是挺耐想的(至少对我来说是这样).开始时我只会60 ...

  9. poj1006中国剩余定理

    Biorhythms Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 103506   Accepted: 31995 Des ...

随机推荐

  1. Angular ZoneJS 原理

    Zone.js到底是如何工作的? 原文链接: blog.kwintenp.com 如果你阅读过关于Angular 2变化检测的资料,那么你很可能听说过zone.Zone是一个从Dart中引入的特性并被 ...

  2. java学习日志---File实例:实现复制整个文件夹、解决listFiles()为null问题

    需求:将H盘下的所有文件复制到H:/All 文件夹中 思路:使用递归遍历整个目标目录 传入目标路径 判断是否是文件夹 是:调用listFiles()方法,得到File数组,重点内容接着执行1 否:复制 ...

  3. UVA-12333 Revenge of Fibonacci(竖式加法模拟 & 字典树)

    题目: 给出一个斐波那契数字的前缀,问第一个有这个前缀的数字在斐波那契数列中是第几个. 思路: 紫书提示:本题有一定效率要求.如果高精度代码比较慢,可能会超时. 利用滚动数组和竖式加法来模拟斐波那契相 ...

  4. 网络配置:IP+NETMASK+GATEWAY+DNS

    1.  IP IP地址(英语:Internet Protocol Address)是一种在Internet上的给主机编址的方式,也称为网际协议地址.常见的IP地址,分为IPv4与IPv6两大类. IP ...

  5. PHP 锁机制

    应用环境 解决高并发,库存为负数的情况 阻塞模式 如果其他进程已经加锁文件,当前进程会一直等其他进程解锁文件后继续执行 flock($fp, LOCK_EX) // 文件锁 非阻塞模式 如果其他进程已 ...

  6. python爬虫22 | 以后我再讲python「模拟登录」我就是狗

    接下来就是 学习python的正确姿势 做爬虫 绕不开模拟登录 为此小帅b给大家支了几招 python爬虫19 | 遇到需要的登录的网站怎么办?用这3招轻松搞定! 有些网站的登录很弱鸡 传个用户名和密 ...

  7. SecureCRT 8.0设置与使用

    1.设置回看缓冲信息的行数:

  8. Java基础学习总结(77)——Java枚举再总结

    在Java SE5之前,我们要使用枚举类型时,通常会使用static final 定义一组int常量来标识,代码如下 public static final int MAN = 0; public s ...

  9. asp.net mvc 4.0 新特性之移动特性

    asp.net mvc 4.0 新特性之移动特性 为不同的客户端提供不同的视图 手动重写 UserAgent,从而强制使用对应的视图 示例1.演示如何为不同的客户端提供不同的视图Global.asax ...

  10. lnmp的安装--nginx

    1.nginx的安装 安装所需环境 Nginx 是 C语言 开发,建议在 Linux 上运行,当然,也可以安装 Windows 版本,本篇则使用 CentOS 7 作为安装环境. 一. gcc 安装安 ...