洛谷—— P1347 排序

题目描述

一个不同的值的升序排序数列指的是一个从左到右元素依次增大的序列,例如,一个有序的数列A,B,C,D 表示A<B,B<C,C<D。在这道题中,我们将给你一系列形如A<B的关系,并要求你判断是否能够根据这些关系确定这个数列的顺序。

输入输出格式

输入格式:

第一行有两个整数n,m,n表示需要排序的元素数量,2<=n<=26,第1到n个元素将用大写的A,B,C,D....表示。m表示将给出的形如A<B的关系的数量。

接下来有m行,每行有3个字符,分别为一个大写字母,一个<符号,一个大写字母,表示两个元素之间的关系。

输出格式:

若根据前x个关系即可确定这n个元素的顺序yyy..y(如ABC),输出

Sorted sequence determined after xxx relations: yyy...y.

若根据前x个关系即发现存在矛盾(如A<B,B<C,C<A),输出

Inconsistency found after 2 relations.

若根据这m个关系无法确定这n个元素的顺序,输出

Sorted sequence cannot be determined.

(提示:确定n个元素的顺序后即可结束程序,可以不用考虑确定顺序之后出现矛盾的情况)

输入输出样例

输入样例#1:

1:
4 6
A<B
A<C
B<C
C<D
B<D
A<B

2:
3 2
A<B
B<A

3:
26 1
A<Z
输出样例#1:

1:
Sorted sequence determined after 4 relations: ABCD.
2:
Inconsistency found after 2 relations.
3:
Sorted sequence cannot be determined.

思路:这个题显然使用拓扑排序做。

注意:输入一个字符需要加&但是输入一个字符串不需要加&;代码:
#include<queue>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 110
using namespace std;
int a,b,n,m,s,sum,tot,head[N],in[N],inn[N],p[N];
bool v,unpd,vis[N];
queue<int>q;
char ch;
int read()//在这里我用的读入优化
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-';ch=getchar();}
    return f*x;
}
struct Edge
{
    int from,to,next;
}edge[N];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].next=head[x];
    head[x]=tot;
}//和以前的拓扑排序过程一样,只是多加了几种情况
int tp()
{
    unpd=;//初始数值
    ;i<=;i++)//开始找入读为一的点
     {
         inn[i]=in[i];//由于我们要没输入一组后就对该序列进行判断,所以我们新设一个数组inn储存in中的各点入度的值,防止我们下一次在用时,该店的入度值已不是初始值
         if(!inn[i]&&vis[i])//该点的入读为0并且我们输入过该值
          {
              if(!v) v=true;//我们要判断有几个入读为0的点,由于如果有两个入读为0的点我们则无法判断他们的关系因为入读为0的点一定是小的,但这两个值得大小我们又无法判断
              else unpd=true;//unpd用来判断无法判段的情况
              q.push(i);
              p[++sum]=i;
           }
      }
    ;//如果q数组为空,就说明出现了环,则是存在矛盾的情况。
    while(!q.empty())//单纯的拓扑排序,但我们要在里面多加一点东西:和前面判断入读为0的方法一样,如果删除一个点以后出现了两个入度为0的边,这样我们将无法判断这两个点的大小
    {
        int x=q.front();v=false;q.pop();
        for(int i=head[x];i;i=edge[i].next)
        {
            inn[edge[i].to]--;
            if(!inn[edge[i].to])
            {
                q.push(edge[i].to);
                if(!v) v=true;
                else unpd=true;
                p[++sum]=edge[i].to;
            }
        }
    }
    ;//说明出现了环。
    ;
    ;
}
int main()
{
    n=read(),m=read();
    ;i<=m;i++)
    {
        cin>>ch,a=ch-;if(!vis[a]) vis[a]=true,s++;//s是用来存我们输入的元素的个数,方便后面判断s值与sum值的关系(来判断是否为环)
        cin>>ch;//这个在输入时其实我们也可以用一个数组来表示,在这里我们由于有一个<是没有用的,所以我们直接输入就好了
        cin>>ch,b=ch-;if(!vis[b]) vis[b]=true,s++;//vis用来表示该数有值
        add(a,b);//在这里我们将我们输入的字符转化成了数字,方便后面进行操作
        in[b]++;//储存入读
        ) //在这里我们必须让他等于1,因为我们在tp函数中返回的是0,1,2
        {
            printf("Inconsistency found after %d relations.",i);//存在矛盾
            ;
        }
        if(sum==n&&!tp())//sum=n,说明该序列中所有的数都进行了排序,都能确定他们的位置
        {
            printf("Sorted sequence determined after %d relations: ",i);
            ;j<=n;j++) printf();//在最开始的时候我竟然让他输出p[i]+64.这告诉我们要注意我们循环使用的变量i,j
            printf(".");
            ;
        }
    }
    printf("Sorted sequence cannot be determined.");//由于我们在tp函数中只有三种情况,除了前两种剩下的就是这一种了。
    ;
}

 
 

洛谷——P1347 排序的更多相关文章

  1. 洛谷 P1347 排序

    题目描述 一个不同的值的升序排序数列指的是一个从左到右元素依次增大的序列,例如,一个有序的数列A,B,C,D 表示A<B,B<C,C<D.在这道题中,我们将给你一系列形如A<B ...

  2. 洛谷P1347 排序

    这个题看到很多人写Topo排序,其实这道题第一眼看更像是一个差分约束的裸题QWQ... 令dis[x]表示x的相对大小(1是最小,n是最大),显然,对于一个关系A<B,我们有dis[A]< ...

  3. 【洛谷P1347】排序

    题目大意:给定 N 个变量和 M 个变量之间的偏序关系,问能否求出这 N 个变量之间的一个全序.若能,输出最少利用多少条已知信息即可求的结果,且输出该全序:若无解,输出到第几条已知信息可以判定无解:若 ...

  4. 题解【洛谷P1347】排序

    题目描述 一个不同的值的升序排序数列指的是一个从左到右元素依次增大的序列,例如,一个有序的数列\(A,B,C,D\) 表示\(A<B,B<C,C<D\).在这道题中,我们将给你一系列 ...

  5. 洛谷 P1347 【排序】

    这篇题解没有用拓补排序 (嗐 菜就直说) 个人感觉这道题拓补排序没有变种\(Floyd\)好写吧,思维难度也低一点(亲眼目睹机房dalao这道题拓补排序调了很久). 吐槽结束,开始正题~ 对于这道题为 ...

  6. 洛谷P2824 排序

    解:splay + 线段树合并,分裂. 首先有个乱搞做法是外层拿splay维护,有序区间缩成splay上一个节点.内层再开个数据结构支持合并分裂有序集合. 内层我一开始想的是splay,然后就没有复杂 ...

  7. 【题解】洛谷P1975排序

    分块,注意重复的值之间的处理.跟普通分块的操作一样的啦,具体可以参见‘不勤劳的图书管理员’. #include <bits/stdc++.h> using namespace std; # ...

  8. 洛谷P3953 逛公园(NOIP2017)(最短/长路,拓扑排序,动态规划)

    洛谷题目传送门 又是一年联赛季.NOIP2017至此收官了. 这个其实是比较套路的图论DP了,但是细节有点恶心. 先求出\(1\)到所有点的最短路\(d1\),和所有点到\(n\)的最短路\(dn\) ...

  9. 洛谷P4332 [SHOI2014]三叉神经树(LCT,树剖,二分查找,拓扑排序)

    洛谷题目传送门 你谷无题解于是来补一发 随便百度题解,发现了不少诸如树剖\(log^3\)LCT\(log^2\)的可怕描述...... 于是来想想怎么利用题目的性质,把复杂度降下来. 首先,每个点的 ...

随机推荐

  1. java实现单向链表的增、删、改、查

    单向链表 作者:vashon package com.ywx.link; /** * 单向链表 * @author vashon * */ public class LinkTest { public ...

  2. ASP.NET MVC IIS7 403.14-Forbidden

    问题描述 IIS 7上发布ASP.NET MVC程序报错:403.14-Forbidden Web 服务器被配置为不列出此目录的内容 折腾了半天,提示里面的解决方法是: 如果不希望启用目录浏览,请确保 ...

  3. AngularJS日期格式化

    本地化日期格式化:({{ today | date:'medium' }})    Mar 28, 2016 6:42:25 PM({{ today | date:'short' }})   3/28 ...

  4. Oracle AWR报告的生成

    生成AWR报告需要dbms_workload_repository包的权限. 一.以oracle用户登录到数据库服务器 二.进入SQLPLUS 三.执行脚本 @?/rdbms/admin/awrrpt ...

  5. QT 学习笔记概述

    以下笔记为在看书和实践的过程中的部分记录总结: 0. 窗口布局 1) 支持绝对布局和布局管理器布局; 2) 绝对布局不够灵活.无法自动调整大小,需要手动编写代码调整: 3) 布局管理器管理布局比较灵活 ...

  6. SQLite -插入查询

     SQLite -插入查询 SQLite插入语句是用来添加新行数据到数据库中的一个表. 语法: 有两种基本的插入语句的语法如下: INSERT INTO TABLE_NAME (column1, co ...

  7. zuul 整理

    网关: 为了解决ip+端口的不友好性而产生.具有服务代理的功能nginx 功能: 1.验证与安全保障: 识别面向各类资源的验证要求并拒绝那些与要求不符的请求. 2.审查与监控: 在边缘位置追踪有意义数 ...

  8. js Math 对象

    Math 对象方法 方法 描述 abs(x) 返回数的绝对值. acos(x) 返回数的反余弦值. asin(x) 返回数的反正弦值. atan(x) 以介于 -PI/2 与 PI/2 弧度之间的数值 ...

  9. xcode菜单栏

    File  文件 Edit  编辑 View 视图 Navigate 导航 Editor 编辑 Product 产品 Window  窗口 Help 帮助 File  文件 New 新建        ...

  10. 717. 1-bit and 2-bit Characters@python

    We have two special characters. The first character can be represented by one bit 0. The second char ...