题目大意:先给出了TSP的背景,然后给出一个n*m的单位格点的图,图中除边缘上的点与八个方向的点有边连接,距离为欧拉距离,求从左上角出发的TSP

思路:从水题列表中看到的题,但看一开始给出的background是TSP就惊呆了,但看到题目觉得很好想。显然,行和列是对等的,并且当行列中有一个是偶数时都能像下图这样M状的遍历所有的点,通过割补发现线的长度为m*n。当m,n都为奇数时显然不能像上图那样遍历,因为是奇数,穿到下面后就没有点使它再回到上面了,但是发现增加一条斜边(长度为根号2)可以将问题转化为一边是奇数,一边是偶数的情况,此时长度为m*n-1+1.41=m*n+0.41 于是问题顺利解决

#include<cstdio>

#include<string.h>

#include<iostream>

using namespace std;

int main()

{

int t,m,n;

scanf("%d",&t);

for(int k=1;k<=t;k++)

{

scanf("%d%d",&m,&n);

if((m & 1) ==0 || (n & 1)==0){printf("Scenario#%d:\n%d",k,m*n);printf(".00\n\n");}

else {printf("Scenario#%d:\n%d",k,m*n);printf(".41\n\n");}

}

return 0;

}

POJ1450:Gridland 【杂题】的更多相关文章

  1. 正睿OI DAY3 杂题选讲

    正睿OI DAY3 杂题选讲 CodeChef MSTONES n个点,可以构造7条直线使得每个点都在直线上,找到一条直线使得上面的点最多 随机化算法,check到答案的概率为\(1/49\) \(n ...

  2. dp杂题(根据个人进度选更)

    ----19.7.30 今天又开了一个新专题,dp杂题,我依旧按照之前一样,这一个专题更在一起,根据个人进度选更题目; dp就是动态规划,本人认为,动态规划的核心就是dp状态的设立以及dp转移方程的推 ...

  3. wangkoala杂题总集(根据个人进度选更)

    CQOI2014 数三角形 首先一看题,先容斥一波,求出网格内选三个点所有的情况,也就是C(n*m,3);然后抛出行里三点共线的方案数:C(n,3)*m; 同理就有列中三点共线的方案数:n*C(m,3 ...

  4. 2019暑期金华集训 Day6 杂题选讲

    自闭集训 Day6 杂题选讲 CF round 469 E 发现一个数不可能取两次,因为1,1不如1,2. 发现不可能选一个数的正负,因为1,-1不如1,-2. hihoCoder挑战赛29 D 设\ ...

  5. Atcoder&CodeForces杂题11.7

    Preface 又自己开了场CF/Atcoder杂题,比昨天的稍难,题目也更有趣了 昨晚炉石检验血统果然是非洲人... 希望这是给NOIP2018续点rp吧 A.CF1068C-Colored Roo ...

  6. Codeforces 杂题集 2.0

      记录一些没有写在其他随笔中的 Codeforces 杂题, 以 Problemset 题号排序   1326D2 - Prefix-Suffix Palindrome (Hard version) ...

  7. 【Java面试】-- 杂题

    杂题 2019-11-03  21:09:37  by冲冲 1.类加载器的双亲委派机制 类加载器:把类通过类加载器加载到JVM中,然后转换成class对象(通过类的全路径来找到这个类). 双亲委派机制 ...

  8. 贪心/构造/DP 杂题选做Ⅱ

    由于换了台电脑,而我的贪心 & 构造能力依然很拉跨,所以决定再开一个坑( 前传: 贪心/构造/DP 杂题选做 u1s1 我预感还有Ⅲ(欸,这不是我在多项式Ⅱ中说过的原话吗) 24. P5912 ...

  9. 贪心/构造/DP 杂题选做Ⅲ

    颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...

随机推荐

  1. servlet生命周期:

    Servlet生命周期分为三个阶段: 1,初始化阶段  servlet实例创建时调用init()方法,在Servlet的整个生命周期内,init()方法只被调用一次. 2,响应客户请求阶段 调用ser ...

  2. zoj3772Calculate the Function(矩阵+线段树)

    链接 表达式类似于斐波那契 但是多了一个变量 不能用快速幂来解 不过可以用线段树进行维护 对于每一个点够一个2*2的矩阵 1 a[i] 1  0   这个矩阵应该不陌生 类似于构造斐波那契的那个数列 ...

  3. poj1857 To Europe! To Europe!

    思路: 一维dp. 实现: #include <cstdio> #include <iostream> using namespace std; const int INF = ...

  4. The lion king 经典句型摘录

    What am I going to do with him? Everything the light touches is our kingdom. But I thought a king ca ...

  5. ssl证书过期问题解决

    1,ssl证书失效现象 小程序debug有如下证书无效信息: 浏览器访问https://ic-park.net:30001/indoornav/callFunction1.php 提示证书风险. 2, ...

  6. Java Web 开发中路径相关问题小结

    Java Web开发中路径问题小结 (1) Web开发中路径的几个基本概念 假设在浏览器中访问了如下的页面,如图1所示: 图1 Eclipse中目录结构如图2所示: 图2 那么针对这个站点的几个基本概 ...

  7. css-test

    transition-content See the Pen NLOgVR by nakata139@gmail.com (@deepblue1982) on CodePen.

  8. ldap_modify: No such object (32) matched DN: cn=config

    centos 6.9 部署 kerbors ldap 报错 [root@hadoop data]# ldapmodify -Y EXTERNAL -H ldapi:/// -f chdomain.ld ...

  9. Elasticsearch学习(二)————搜索

    Elasticsearch1.query string search1.1.搜索全部// 1. GET http://ip:9200/test/test/_search 结果: { "too ...

  10. navicat 链接数据库查看的工具 可以同时查看各种数据库 MySql SqlServer

    navicat 链接数据库查看的工具 Navicat_Premium_10.0.11.0_XiaZaiBa