POJ1450:Gridland 【杂题】
题目大意:先给出了TSP的背景,然后给出一个n*m的单位格点的图,图中除边缘上的点与八个方向的点有边连接,距离为欧拉距离,求从左上角出发的TSP
思路:从水题列表中看到的题,但看一开始给出的background是TSP就惊呆了,但看到题目觉得很好想。显然,行和列是对等的,并且当行列中有一个是偶数时都能像下图这样M状的遍历所有的点,通过割补发现线的长度为m*n。当m,n都为奇数时显然不能像上图那样遍历,因为是奇数,穿到下面后就没有点使它再回到上面了,但是发现增加一条斜边(长度为根号2)可以将问题转化为一边是奇数,一边是偶数的情况,此时长度为m*n-1+1.41=m*n+0.41 于是问题顺利解决
#include<cstdio>
#include<string.h>
#include<iostream>
using namespace std;
int main()
{
int t,m,n;
scanf("%d",&t);
for(int k=1;k<=t;k++)
{
scanf("%d%d",&m,&n);
if((m & 1) ==0 || (n & 1)==0){printf("Scenario#%d:\n%d",k,m*n);printf(".00\n\n");}
else {printf("Scenario#%d:\n%d",k,m*n);printf(".41\n\n");}
}
return 0;
}
POJ1450:Gridland 【杂题】的更多相关文章
- 正睿OI DAY3 杂题选讲
正睿OI DAY3 杂题选讲 CodeChef MSTONES n个点,可以构造7条直线使得每个点都在直线上,找到一条直线使得上面的点最多 随机化算法,check到答案的概率为\(1/49\) \(n ...
- dp杂题(根据个人进度选更)
----19.7.30 今天又开了一个新专题,dp杂题,我依旧按照之前一样,这一个专题更在一起,根据个人进度选更题目; dp就是动态规划,本人认为,动态规划的核心就是dp状态的设立以及dp转移方程的推 ...
- wangkoala杂题总集(根据个人进度选更)
CQOI2014 数三角形 首先一看题,先容斥一波,求出网格内选三个点所有的情况,也就是C(n*m,3);然后抛出行里三点共线的方案数:C(n,3)*m; 同理就有列中三点共线的方案数:n*C(m,3 ...
- 2019暑期金华集训 Day6 杂题选讲
自闭集训 Day6 杂题选讲 CF round 469 E 发现一个数不可能取两次,因为1,1不如1,2. 发现不可能选一个数的正负,因为1,-1不如1,-2. hihoCoder挑战赛29 D 设\ ...
- Atcoder&CodeForces杂题11.7
Preface 又自己开了场CF/Atcoder杂题,比昨天的稍难,题目也更有趣了 昨晚炉石检验血统果然是非洲人... 希望这是给NOIP2018续点rp吧 A.CF1068C-Colored Roo ...
- Codeforces 杂题集 2.0
记录一些没有写在其他随笔中的 Codeforces 杂题, 以 Problemset 题号排序 1326D2 - Prefix-Suffix Palindrome (Hard version) ...
- 【Java面试】-- 杂题
杂题 2019-11-03 21:09:37 by冲冲 1.类加载器的双亲委派机制 类加载器:把类通过类加载器加载到JVM中,然后转换成class对象(通过类的全路径来找到这个类). 双亲委派机制 ...
- 贪心/构造/DP 杂题选做Ⅱ
由于换了台电脑,而我的贪心 & 构造能力依然很拉跨,所以决定再开一个坑( 前传: 贪心/构造/DP 杂题选做 u1s1 我预感还有Ⅲ(欸,这不是我在多项式Ⅱ中说过的原话吗) 24. P5912 ...
- 贪心/构造/DP 杂题选做Ⅲ
颓!颓!颓!(bushi 前传: 贪心/构造/DP 杂题选做 贪心/构造/DP 杂题选做Ⅱ 51. CF758E Broken Tree 讲个笑话,这道题是 11.3 模拟赛的 T2,模拟赛里那道题的 ...
随机推荐
- Python实现决策树ID3算法
主要思想: 0.训练集格式:特征1,特征2,...特征n,类别 1.采用Python自带的数据结构字典递归的表示数据 2.ID3计算的信息增益是指类别的信息增益,因此每次都是计算类别的熵 3.ID3每 ...
- C#中构造函数和析构函数区别
把对象的初始化工作放在构造函数中,把清除工作放在析构函数中.当对象被创建时,构造函数被自动执行.当对象消亡时,析构函数被自动执行.这样就不用担心忘记对象的初始化和清除工作. 析构函数是由垃圾回收器控制 ...
- 命令模式和php实现
命令模式: 命令模式(Command Pattern):将一个请求封装为一个对象,从而使我们可用不同的请求对客户进行参数化:对请求排队或者记录请求日志,以及支持可撤销的操作.命令模式是一种对象行为型模 ...
- 013、BOM对象的应用
BOM结构图如下: DOM结构图如下: BOM和DOM BOM,Bowser Object Model浏览器对象模型.提供了访问和操作浏览器各组件的途径或方法. 比如:Navigator对象:浏览器的 ...
- hihocoder1718 最长一次上升子序列
思路: 对于每个i,分别求1~i和i+1~N两部分的最长下降子序列“拼”起来,最终取最大长度即可.学习了如何使用BIT把LIS问题O(N2)算法优化为O(Nlog(N))的算法. https://ww ...
- 009全志R16平台tinav3.0下编译不过的问题
009全志R16平台tinav3.0下编译不过的问题 2018/11/13 11:39 版本:V1.0 开发板:SC3817R SDK:tina v3.0 1.01原始编译全志r16平台tinav3. ...
- 用JS检测页面加载的不同阶段状态
这可以通过用document.onreadystatechange的方法来监听状态改变, 然后用document.readyState == “complete”判断是否加载完成. 可以采用2个div ...
- jmeter+ant+jenkins
前提:需要先配置下面两个环境,严格按照本人的配置去配,要不然后面你会看不懂 (1)ant+jmeter集成:http://blog.csdn.net/qq_23101033/article/detai ...
- 洛谷 P1030 求先序排列
题目描述 给出一棵二叉树的中序与后序排列.求出它的先序排列.(约定树结点用不同的大写字母表示,长度<=8). 输入输出格式 输入格式: 2行,均为大写字母组成的字符串,表示一棵二叉树的中序与后序 ...
- pycharm激活码 pycharm安装后激活方式 pycharm汉化包安装
汉化包 下载地址: 链接:http://pan.baidu.com/s/1pL6xWl9 密码:x1fh 将下载好的文件解压:将resources_cn.jar放到安装目录下的lib目录下即可 重启 ...