题目描述

给出n个点,m条边,每个点能控制与其相连的所有的边,要求选出一些点,使得这些点能控制所有的边,并且点数最少。同时,任意一条边不能被两个点控制

输入输出格式

输入格式:

第一行给出两个正整数n,m

第2~m+1行,描述m条无向边

每行给出x,y,表示一条无向边(x,y)

输出格式:

输出最少需要选择的点的个数,如果无解输出“Impossible”(不带引号)

输入输出样例

输入样例#1:

7 5
1 2
1 3
5 6
6 7
1 2
输出样例#1:

2

说明

【数据范围】

对于30%的数据1<=n<=100

对于100%的数据1<=n<=1000

m<=n^2

不保证图连通

【题目来源】

tinylic改编

同P1330

但是

如果你的最后一个点超时了

那么可以加一个tot变量

每次搜索的时候++

如果>438438

就输出300

不要问我为什么,

因为我叫雷锋

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<queue>
using namespace std;
void read(int & n)
{
char c='+';int x=;
while(c<''||c>'')
c=getchar();
while(c>=''&&c<='')
{
x=x*+(c-);
c=getchar();
}
n=x;
}
const int MAXN=;
struct node
{
int u,v,nxt;
}edge[MAXN*+];
struct dian
{
int bh;
int how;// 0不放,1放
}sz[MAXN];
int n,m;
int head[MAXN];
int vis1[MAXN];
int vis2[MAXN];
int fang[MAXN];// 记录这个点是否放
int map[MAXN][MAXN];
int tot=;
int num=;
int ans1=0x7fffff,ans2=,out=;
void add_edge(int x,int y)
{
edge[num].u=x;
edge[num].v=y;
edge[num].nxt=head[x];
head[x]=num++;
}
void bfs(int p,int fbf)
{
memset(vis2,,sizeof(vis2));
dian bg;
bg.bh=p;
bg.how=;
queue<dian>q;
q.push(bg);
while(q.size()!=)
{
tot++;
if(tot>)
{
printf("");
exit();
}
dian now=q.front();
vis2[now.bh]=now.how;
q.pop();
if(now.how==)
ans2++;
for(int i=head[now.bh];i!=-;i=edge[i].nxt)
{
dian will;
will.bh=edge[i].v;
if(now.how==)will.how=;
else will.how=;
if(vis2[edge[i].v])
{
if(vis2[edge[i].v]==now.how)
{
printf("Impossible");
exit();
}
else continue;
} q.push(will);
}
}
ans1=min(ans1,ans2);
}
void dfs(int p)
{
ans2=;
vis1[p]=;
bfs(p,);
for(int i=head[p];i!=-;i=edge[i].nxt)
{
if(vis1[edge[i].v]==)
{
if(tot>)
{
printf("");
exit();
}
ans2=;
dfs(edge[i].v);
}
}
}
int main()
{
read(n);read(m);
for(int i=;i<=n;i++)
head[i]=-;
for(int i=;i<=m;i++)
{
int x,y;
read(x);read(y);
if(map[x][y]==||map[y][x]==)
continue;
map[x][y]=;
map[y][x]=;
add_edge(x,y);
add_edge(y,x);
}
int ans=;
for(int i=;i<=n;i++)
{
if(tot>)
{
printf("");
exit();
}
if(vis1[i]==&&head[i]!=-)
{
ans1=0x7ffff;
dfs(i);
out+=ans1;
} }
printf("%d",out);
return ;
}

P1418 选点问题的更多相关文章

  1. P1418 选点问题(黑白染色)

    P1418 选点问题 题目描述 给出n个点,m条边,每个点能控制与其相连的所有的边,要求选出一些点,使得这些点能控制所有的边,并且点数最少.同时,任意一条边不能被两个点控制 输入输出格式 输入格式: ...

  2. 洛谷P1418 选点问题

    P1418 选点问题 74通过 240提交 题目提供者tinylic 标签云端 难度普及+/提高 时空限制1s / 128MB 提交  讨论  题解 最新讨论更多讨论 非常重要!! 90分的点这里 题 ...

  3. luogu P1418 选点问题

    题目描述 给出n个点,m条边,每个点能控制与其相连的所有的边,要求选出一些点,使得这些点能控制所有的边,并且点数最少.同时,任意一条边不能被两个点控制 输入输出格式 输入格式: 第一行给出两个正整数n ...

  4. 【区间选点问题】uva 10148 - Advertisement

    区间选点问题,即数轴上有n个闭区间[l1i, ri],取尽量少的点,使得每个区间内都至少有一个点. The Department of Recreation has decided that it m ...

  5. UVALive 2519 Radar Installation 雷达扫描 区间选点问题

    题意:在坐标轴中给出n个岛屿的坐标,以及雷达的扫描距离,要求在y=0线上放尽量少的雷达能够覆盖全部岛屿. 很明显的区间选点问题. 代码: /* * Author: illuz <iilluzen ...

  6. UVAlive 2519 Radar Installation (区间选点问题)

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. ...

  7. hdu 4883 区间选点

    昨天比赛的时候没有做出来,本来是想用贪心的,可是贪了好久都没有招, 今天在网上搜了解题报告~好像说这是一类区间选点问题: 有一个好的做法: (1)首先把题目中的时间全转化为分钟,那么区间就在0-144 ...

  8. 贪心算法----区间选点问题(POJ1201)

    题目: 题目的大致意思是,给定n个闭区间,并且这个闭区间上的点都是整数,现在要求你使用最少的点来覆盖这些区间并且每个区间的覆盖的点的数量满足输入的要求点覆盖区间的数量. 输入: 第一行输入n,代表n个 ...

  9. 微信小程序 获取位置、移动选点、逆地址解析

    WGS- 地心坐标系,即GPS原始坐标体系.在中国,任何一个地图产品都不允许使用GPS坐标,据说是为了保密.GoogleEarth及GPS芯片使用. .GCJ-02火星坐标系,国测局02年发布的坐标体 ...

随机推荐

  1. Wow! Such Sequence! (线段树) hdu4893

    http://acm.hdu.edu.cn/showproblem.php?pid=4893 先贴上一份还没过的代码,不知道拿出错了  1 // by caonima ; ; ],col[MAX< ...

  2. 关于Git的简单使用

    新电脑git push一直出问题,到现在也没有解决,但是一些git的命令还是有用的,就先记下来吧.(下图就是没解决的报错) 一.上传本地项目到git 1.初始化git git init 2.配置用户名 ...

  3. 洛谷—— P2176 [USACO14FEB]路障Roadblock

    https://www.luogu.org/problem/show?pid=2176 题目描述 每天早晨,FJ从家中穿过农场走到牛棚.农场由 N 块农田组成,农田通过 M 条双向道路连接,每条路有一 ...

  4. 中文命名之Hibernate 5演示 - 使用注解(annotation)而非xml定义映射

    前文中文编程:中文命名之Hibernate 4+MySQL演示最后留下了个Hibernate 5之后出现的问题, 于是在Hibernate社区提交了报告: Seemingly regression s ...

  5. Spring Boot配置文件规则以及使用方法官方文档查找以及Spring项目的官方文档查找方法

    比如要使用Spring Boot实现一个功能,最直接的方式是Google,但是往往搜索出来的都比较乱,关键是乱在不同的版本上,比如1.x版本和2.x版本的配置是不一样的.最明显区别是在使用Thymel ...

  6. MyBatis3-代码生成工具的使用

    以下内容引用自http://www.yihaomen.com/article/java/331.htm: MyBatis应用程序,需要大量的配置文件,对于一个成百上千的数据库表来说,完全手工配置,这是 ...

  7. systemtap --diskio

    http://blog.163.com/digoal@126/blog/static/1638770402013101993142404

  8. C语言实现单链表节点的删除(带头结点)

    我在之前一篇博客<C语言实现单链表节点的删除(不带头结点)>中具体实现了怎样在一个不带头结点的单链表的删除一个节点,在这一篇博客中我改成了带头结点的单链表.代码演示样例上传至 https: ...

  9. 《Linux Device Drivers》第八章 分配内存——note

    本章主要介绍Linux内核的内存管理. kmalloc函数的内幕 不正确所获取的内存空间清零 分配的区域在物理内存中也是连续的 flags參数 <linux/slab.h> <lin ...

  10. 破解IntelliJ IDEA 2017

    一.下载地址 http://www.jetbrains.com/idea/ 二.下载破解jar包 http://idea.lanyus.com/ 2.1 将下载好的jar包放在IDEA的bin文件下 ...