当我们拆分完数据以后,

  A^B的所有约数之和为:

sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2+...+pn^(an*B)].

  当时面对等比数列的时候,想到了求和公式,因为直接算超时了,但是带膜除法不能直接除,所以又想到了乘法逆元,但是逆元的使用条件是除数和mod互质的时候,题目给我们的膜不够大,然后我就方了,不知道该怎么去处理了,后来看到网上,才学会了等比快速求和的方法。

  它的思想是二分法+递归,规律如下:

(1)若n为奇数,一共有偶数项,则:
      1 + p + p^2 + p^3 +...+ p^n

= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
      = (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))

(2)若n为偶数,一共有奇数项,则:
      1 + p + p^2 + p^3 +...+ p^n

= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
      = (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);

 至于幂的求法,可以用快速幂去求。代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
///sqrt(50000000) = 7071.07;///数据足够
/// num = a1(q^n - 1)/ (q-1);///方法难以使用
const long long Mod = ;
#define maxn 8000
#define LL long long
LL a,b,p[maxn],e[maxn],tot;
void split()
{
int d = sqrt(a*1.0);///素数因子在它的根号之下
tot = ;
memset(e,,sizeof(e));
for(int i = ; i <= d; i+=)
{
if(a == ) break;
if(a%i == )
{
p[tot] = i;
while(a % i == )
{
a /= i;
e[tot]++;
}
tot++;
}
if(i == ) i--;///这种方法求素数很高效
}
if(a != )
{
p[tot] = a;
e[tot]++;
tot++;
}
for(int i = ; i < tot; i++)
e[i] *= b;
/*for(int i = 0;i < tot;i++){
printf("p[%d] = %lld e[%d] = %lld\n",i,p[i],i,e[i]);
}*/
}
LL mypow(LL a,LL b)
{
if(b == ) return ;
if(b == ) return a % Mod;
if(b % == ) return mypow(((a%Mod)*(a%Mod))%Mod,b/)%Mod;
else return ((a%Mod) * mypow(a%Mod,b-)) % Mod;
}
LL get_sum(LL a,LL b)
{
if(b==) return ;
if(b % ) return ((get_sum(a,b/)%Mod)*(+mypow(a,b/+))%Mod) % Mod;
else return ((get_sum(a,b/-)%Mod * (+mypow(a,b/+)%Mod))%Mod + mypow(a,b/)%Mod) % Mod; }
int main()
{
while(~scanf("%I64d %I64d",&a,&b))
{
split();
LL ans = ;
for(int i = ;i < tot;i++)
{
ans = ans * get_sum(p[i],e[i])%Mod;///这里不可以省略
}
printf("%I64d\n",ans);
}
return ;
}

 注意:这里有一个很难发现的错误,在取膜的时候不可以使用 ans ×= 的形式,优先级的不同会让他溢出。

POJ 1845 Sumdiv (整数拆分+等比快速求和)的更多相关文章

  1. poj 1845 POJ 1845 Sumdiv 数学模板

    筛选法+求一个整数的分解+快速模幂运算+递归求计算1+p+p^2+````+p^nPOJ 1845 Sumdiv求A^B的所有约数之和%9901 */#include<stdio.h>#i ...

  2. POJ 1845 Sumdiv [素数分解 快速幂取模 二分求和等比数列]

    传送门:http://poj.org/problem?id=1845 大致题意: 求A^B的所有约数(即因子)之和,并对其取模 9901再输出. 解题基础: 1) 整数的唯一分解定理: 任意正整数都有 ...

  3. POJ 1845 Sumdiv (整数唯一分解定理)

    题目链接 Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 25841   Accepted: 6382 Desc ...

  4. POJ 1845 Sumdiv(因子分解+快速幂+二分求和)

    题意:给你A,B,让求A^B所有的因子和模上9901 思路:A可以拆成素因子的乘积: A = p1^x1 * p2^x2 *...* pn^xn 那么A^B = p1^(B*x1) * p2^(B*x ...

  5. poj 1845 Sumdiv 约数和定理

    Sumdiv 题目连接: http://poj.org/problem?id=1845 Description Consider two natural numbers A and B. Let S ...

  6. POJ 1845 Sumdiv(逆元)

    题目链接:Sumdiv 题意:给定两个自然数A,B,定义S为A^B所有的自然因子的和,求出S mod 9901的值. 题解:了解下以下知识点   1.整数的唯一分解定理 任意正整数都有且只有唯一的方式 ...

  7. POJ 1845 Sumdiv 【二分 || 逆元】

    任意门:http://poj.org/problem?id=1845. Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions ...

  8. POJ 1845 Sumdiv

    快速幂+等比数列求和.... Sumdiv Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 12599 Accepted: 305 ...

  9. POJ 1845 Sumdiv#质因数分解+二分

    题目链接:http://poj.org/problem?id=1845 关于质因数分解,模板见:http://www.cnblogs.com/atmacmer/p/5285810.html 二分法思想 ...

随机推荐

  1. LeetCode OJ 73. Set Matrix Zeroes

    Given a m x n matrix, if an element is 0, set its entire row and column to 0. Do it in place. click ...

  2. 洛谷-陶陶摘苹果(升级版)-BOSS战-入门综合练习1

    题目描述 Description 又是一年秋季时,陶陶家的苹果树结了n个果子.陶陶又跑去摘苹果,这次她有一个a公分的椅子.当他手够不着时,他会站到椅子上再试试. 这次与NOIp2005普及组第一题不同 ...

  3. ios书籍推荐

    1.Objective-C Programming  内容不多, 却都是精华, 有了一点 C 语言基础可以快速阅读此书, 大概一天时间就可以看完, 看完后对 iOS 开发能够有个基本的印象. 2.iO ...

  4. ios UITapGestureRecognizer 单指单击、单指多击、多指单击、多指多击事件操作

    转自:http://blog.csdn.net/longzs/article/details/7457108 在ios开发中,需用到对于手指的不同操作,以手指点击为例:分为单指单击.单指多击.多指单击 ...

  5. 有关webapplicationcontext的初始化

    ApplicationContext是Spring的核心,Context我们通常解释为上下文环境,我想用“容器”来表述它更容易理解一些,ApplicationContext则是“应用的容器”了:在We ...

  6. java代理的深入浅出(一)-Proxy

    java代理的深入浅出(一)-Proxy 1.什么是代理 代理模式是常用的java设计模式,他的特征是代理类与委托类有同样的接口,代理类主要负责为委托类预处理消息.过滤消息.把消息转发给委托类,以及事 ...

  7. HDU 5810 Balls and Boxes

    n*(m-1)/(m*m) #pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio&g ...

  8. 1.5后台修改添加TDK

    manager\includes\languages\english.php //注意 是后台的语言包define('BOX_CONFIGURATION_Lin_STORE', 'TDKcss_set ...

  9. SharePoint 2010 Modal Dialog

    SharePoint 2010 Modal Dialog Tweet   Modal dialog play very important role to improve the user exper ...

  10. iOS打包app发给测试人员测试

    说明:在项目开发过程中经常需要开发人员将项目打包成ipa包后,发给测试人员进行测试.本文贴图对打包的过程简单介绍. 一.Product ->archive (注意,不能是模拟器状态,如果当前调试 ...