经过了2个月对机器学习的了解后。我发现了,机器学习的方向多种多样。网页排序。语音识别,图像识别,推荐系统等。算法也多种多样。看见其它的书后,我发现除了讲到的k均值聚类。贝叶斯,神经网络,在线学习等等,还有非常多其它的算法。比方说:免疫算法,遗传算法,主成分分析。蚁群算法等等。

好像非常多算法都是须要做非常多的研究才干用的非常好的。据说深度学习是由神经网络升级来的。

神经网络本身就是一本书,内容非常多。龙星计划里面也涉及到多种算法的应用。是要跟着追火爆的算法去学习。还是找最新的机器学习算法呢??

近期比較火的是deep learning。资料多些。学习的人多一些。还是比較生僻的免疫算法,蚁群算法呢???从性能角度上讲,deep learning性能非常好。但是免疫算法可能发展后未来2年能够性能更好。在这样的情况下,学什么比較好呢??我觉得。假设你有高深的数学功底,非常好的思维。还有非常多的有创造性的朋友的话,我给的建议是去发展新的算法。像免疫算法类的。当然假设能创造一个蜜蜂建窝算法就更好了。预计非常多人都没有这个条件,那我们就做一个尾随者好了。就去选择眼下比較热门的deep learning算法。找一个deep
learning应用的场合和公司。应该也非常好。

我可能还有些不一样的我感觉我能做到的人工智能,不想去说机器人打败人类。还有非常多像科幻片里面的机器人一样的状态,我没那个本事。

我想做的事情非常easy,让机器的眼睛看懂普通事物,做一些简单的事情就能够了。所以我基本的方向就是。机器视觉。

那我计划怎样一步一步向前走呢?或者说我要学习哪些东西呢?

我眼下的内容都是关于图像处理的,事实上图像处理就是模式识别最前端的处理工作。让图像的特征更好的体现出来。接下来就是模式识别,这里仅仅能用狭义的理解了。就是特征提取。事实上已经进入机器学习范围。最后就是机器学习。能够统一认知。这里面非常多都设计到一个FPGA处理芯片的的事(这个待会在说)。换个角度说明我要学习的内容,图像处理,比方对照度。图像矫正。边界扫描等。机器学习呢,就是从众多的学习算法里面。在图像上应用比較良好的,比方说,深度学习和主成分分析,(对其它的有些了解就能够了。

应用上和简单算法上)。

机器学习有时候也能够做到图像处理的内容。比方说,聚类就能够进行图像的切割。但是为什么还要去时而学习图像处理的技术呢??想法是这种,机器学习是自己主动提取特征的过程,像决策树可能你就知道它的分类过程。提取特征的过程。但是非常多时候是不知道,但是图像处理则是人为的提供,分离,某些特殊的特征。

可能能降低机器学习的难度等(纯粹的猜想,还有对机器学习的不了解)。

对于FPGA的想法呢???主要考虑的是计算速度,眼下FPGA的计算速度是最好的了,比方说:无人机灾区救援,飞行的速度。摄像头的像素。识别,都须要非常多的计算定位人员信息。

还比方训练的时间,速度是一个重要指标。

可是FPGA它复杂的计算取完毕不了。假设GPU或者APU那一天计算能力能更上一层楼的话。我也会考虑去学习的。

这些仅仅是基本的学习内容,还有非常多小的内容也要跟上。比方说数学。内容非常多,我仅仅能在我能掌握的时间里,对照我的各项能力,来平衡每一部分的学习时间。这些就是我想说的,想跟我一起学习的朋友们。就和我一起学习吧。我的QQ,849886241.求关注,求帮助。

路非常长,要人帮呀。

FPGA机器学习之学习的方向的更多相关文章

  1. 机器学习&深度学习经典资料汇总,data.gov.uk大量公开数据

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  2. 机器学习&深度学习基础(目录)

    从业这么久了,做了很多项目,一直对机器学习的基础课程鄙视已久,现在回头看来,系统的基础知识整理对我现在思路的整理很有利,写完这个基础篇,开始把AI+cv的也总结完,然后把这么多年做的项目再写好总结. ...

  3. 近200篇机器学习&深度学习资料分享(含各种文档,视频,源码等)(1)

    原文:http://developer.51cto.com/art/201501/464174.htm 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定 ...

  4. 近200篇机器学习&深度学习资料分享【转载】

    编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Le ...

  5. 机器学习&深度学习资料分享

    感谢:https://github.com/ty4z2008/Qix/blob/master/dl.md <Brief History of Machine Learning> 介绍:这是 ...

  6. [转载]机器学习&深度学习经典资料汇总,全到让人震惊

    自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来 ...

  7. 人工智能新手入门学习路线和学习资源合集(含AI综述/python/机器学习/深度学习/tensorflow)

    [说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] 1. 分享个人对于人工智能领域的算法综述:如果你想开始学习算法,不妨先了解人工 ...

  8. 机器学习&深度学习资料

    机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 1) 机器学习(Machine Learning)&深度学习(Deep Lea ...

  9. 机器学习&深度学习基础(机器学习基础的算法概述及代码)

    参考:机器学习&深度学习算法及代码实现 Python3机器学习 传统机器学习算法 决策树.K邻近算法.支持向量机.朴素贝叶斯.神经网络.Logistic回归算法,聚类等. 一.机器学习算法及代 ...

随机推荐

  1. [Android学习笔记]获取view的尺寸和坐标

    对于UI方面很多时候需要获取它的很多信息,具体情况见view的文档 View文档 http://developer.android.com/training/index.html 常用方法:获取vie ...

  2. poj 2409+2154+2888(Burnside定理)

    三道burnside入门题: Burnside定理主要理解置换群置换后每种不动点的个数,然后n种不动点的染色数总和/n为answer. 对于旋转,旋转i个时不动点为gcd(n,i). 传送门:poj ...

  3. C++获取文件大小常用技巧

    C++编程语言在程序开发应用中能够帮助我们轻松的完成许多功能需求.比如今天为大家介绍的C++获取文件大小的方法,就可以以多种方式轻松的实现.现在将会实现方法呈现给大家,以便大家参考. C++获取文件大 ...

  4. 因特网的IP协议是不可靠无连接的,那为什么当初不直接把它设计为可靠的?

    因特网使用的IP协议是无连接的,因此其传输是不可靠的. 这样easy使人们感到因特网非常不可靠,那为什么当初不直接把它设计为可靠的? 先打一个例如.邮局寄送的平信非常像无连接的IP数据报.每封平信可能 ...

  5. 1T文件夹 - 微云

    1T文件夹 - 微云 1T文件夹

  6. drupal form 中图片上传

    1.创建url 链接到form $items['qianfeng/add'] = array(     'title' => t('加入信息'),     'page callback' =&g ...

  7. [linux]ubuntu apt-get安装软件失败

    1.首先查看 dns 配置 sudo vi /etc/resolv.conf nameserver 114.114.114.114 nameserver 8.8.8.8 2.修改 apt-get 源 ...

  8. Linux内核升级

    一.测试环境 CentOS6.5 X86 64位 内核版本为 2.6.32 VM 10.07 二.编译内核版本 2.1.kernel 3.2.71 2.2.kernel 3.4.108 2.3.ker ...

  9. qt安装遇到的错误

    /usr/bin/ld: cannot find -lXrender collect2: ld returned 1 exit status make[1]: *** [../../../../lib ...

  10. 在Windows下使用Hexo+GithubPage搭建博客的过程

    1.安装Node.js 下载地址:传送门 去 node.js 官网下载相应版本,进行安装即可. 可以通过node -v的命令来测试NodeJS是否安装成功 2.安装Git 下载地址:传送门 去 Git ...