基础概念

主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

###原理:
在用统计分析方法研究多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关系紧密的变量)删去多余,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。

在pca中要用到的相关概念:

####协方差
协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。总的来说,协方差是一种用来度量两个随机变量关系的统计量。

协方差表示方式:

如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,那么二者之间的协方差就是0。

换句话说,协方差为正时说明X和Y是正相关关系,协方差为负时X和Y是负相关关系,协方差为0时X和Y相互独立。

当样本是n维数据时,它们的协方差实际上是协方差矩阵(对称方阵),方阵的边长是C2n。比如对于3维数据(x,y,z),计算它的协方差就是:

####pca计算过程

  • 第一步,分别求特征的平均值,然后对于所有的样例,都减去对应的均值
  • 第二步,求特征协方差矩阵
  • 第三步,求协方差的特征值和特征向量
  • 第四步,将特征值按照从大到小的顺序排序,选择其中最大的k个,然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵。
  • 第五步,将样本点投影到选取的特征向量上。假设样例数为m,特征数为n,减去均值后的样本矩阵为DataAdjust(mn),协方差矩阵是nn,选取的k个特征向量组成的矩阵为EigenVectors(n*k)。那么投影后的数据FinalData为

整个过程,就是将原始样例的n维特征变成了k维,这k维就是原始特征在k维上的投影。

进行主成分分析主要步骤如下:
1. 指标数据标准化
2. 指标之间的相关性判定;
3. 确定主成分个数m;
4. 主成分Fi表达式;
5. 主成分Fi命名;

主成分分析(principal component analysis,PCA)是一种降维技术,把多个变量化为能够反映原始变量大部分信息的少数几个主成分。

设X有p个变量,为n*p阶矩阵,即n个样本的p维向量。首先对X的p个变量寻找正规化线性组合,使它的方差达到最大,这个新的变量称为第一主成分,抽取第一主成分后,第二主成分的抽取方法与第一主成分一样,依次类推,直到各主成分累积方差达到总方差的一定比例。

主成分分析实例

p=princomp(USArrests,cor=TRUE)
summary(p,loadings=TRUE)

----Standard deviation 标准差 其平方为方差=特征值

----Proportion of Variance 方差贡献率

----Cumulative Proportion 方差累计贡献率

screeplot(p,type="lines")

图中的点在第三个成分的下降已经变得非常平稳了,因而选择前两个变量就能获得较好的信息解释,这也就意味着后两个变量可以舍弃。

也可以利用loadings参数中反映的系数值对主成分进行构建方程

y=-0.536murder-0.583assault-0.278urbanpop-0.543rape

y=0.418murder+0.188assault-0.873urbanpop-0.167rape

pre<-predict(p)
pre

对个主成分的值进行预测的结果

主成分分析 R语言的更多相关文章

  1. PCA主成分分析 R语言

    1. PCA优缺点 利用PCA达到降维目的,避免高维灾难. PCA把所有样本当作一个整体处理,忽略了类别属性,所以其丢掉的某些属性可能正好包含了重要的分类信息 2. PCA原理 条件1:给定一个m*n ...

  2. 主成分分析(PCA)原理及R语言实现

    原理: 主成分分析 - stanford 主成分分析法 - 智库 主成分分析(Principal Component Analysis)原理 主成分分析及R语言案例 - 文库 主成分分析法的原理应用及 ...

  3. 主成分分析(PCA)原理及R语言实现 | dimension reduction降维

    如果你的职业定位是数据分析师/计算生物学家,那么不懂PCA.t-SNE的原理就说不过去了吧.跑通软件没什么了不起的,网上那么多教程,copy一下就会.关键是要懂其数学原理,理解算法的假设,适合解决什么 ...

  4. 主成分分析、实例及R语言原理实现

    欢迎批评指正! 主成分分析(principal component analysis,PCA) 一.几何的角度理解PCA -- 举例:将原来的三维空间投影到方差最大且线性无关的两个方向(二维空间). ...

  5. R语言主成分分析(PCA)

    数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') #数据的导入> > ls(data) #ls()函数列出所有变量 [1] " ...

  6. 【转】R语言主成分分析(PCA)

    https://www.cnblogs.com/jin-liang/p/9064020.html 数据的导入 > data=read.csv('F:/R语言工作空间/pca/data.csv') ...

  7. R语言学习之主成分分析法的R实践

    主成分分析R软件实现程序(一): >d=read.table("clipboard",header=T) #从剪贴板读取数据 >sd=scale(d)  #对数据进行标 ...

  8. 数据分析与R语言

    数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), m ...

  9. 零基础数据分析与挖掘R语言实战课程(R语言)

    随着大数据在各行业的落地生根和蓬勃发展,能从数据中挖金子的数据分析人员越来越宝贝,于是很多的程序员都想转行到数据分析, 挖掘技术哪家强?当然是R语言了,R语言的火热程度,从TIOBE上编程语言排名情况 ...

随机推荐

  1. Redis简介与简单安装

    Redis简介与简单安装   一.NoSQL的风生水起 1.1 后Web2.0时代的发展要求 随着互联网Web2.0网站的兴起,传统的关系数据库在应付Web2.0网站,特别是超大规模和高并发的SNS类 ...

  2. ASP.NET MVC应用程序处理并发

    为ASP.NET MVC应用程序处理并发 2014-05-14 08:37 by Bce, 694 阅读, 2 评论, 收藏, 编辑 这是微软官方教程Getting Started with Enti ...

  3. [Usaco2008 Mar]River Crossing渡河问题[简单DP]

    Description Farmer John以及他的N(1 <= N <= 2,500)头奶牛打算过一条河,但他们所有的渡河工具,仅仅是一个木筏. 由于奶牛不会划船,在整个渡河过程中,F ...

  4. Django ORM 查询管理器

    Django ORM 查询管理器 ORM 查询管理器 对于 ORM 定义: 对象关系映射, Object Relational Mapping, ORM, 是一种程序设计技术,用于实现面向对象编程语言 ...

  5. 搞定KMP匹配算法

    KMP算法介绍及实现——轻松搞定KMP匹配算法 本文介绍了字符串匹配算法中的BF算法和KMP算法.本文中KMP算法介绍部分是关于KMP算法相关文章中最简洁的一篇文章之一.下一篇将继续介绍Horspoo ...

  6. BDD

    Binding business requirements to .NET code http://www.specflow.org/ 行为驱动开发 BDD:Behavior Driven Devel ...

  7. C/C++基础知识总结——继承与派生

    1. 类的继承与派生 1.1 派生类的定义 (1) 定义规范 class 派生类名: 继承方式 基类1名, 继承方式 基类2名... { ...派生类成员声明; }; (2) 从以上形式上看可以多继承 ...

  8. ios学习笔记第三天之UI控件

  9. MongoDB学习3

    MongoDB学习(翻译3)   支持的where字句(比较多,今天先写一部分) 本节介绍支持的where字句 正如前面提到的,不是所有的C#表达式都支持where子句.您可以以此文为指导,或者你可以 ...

  10. 安装oracle后,Tomcat 登陆 localhost 要求用户名和密码

    localhost 要求用户名和密码同时安装了tomcat和oracle9i后,启动Tomcat--连接到localhost 提示:位于 XDB 的服务器 localhost 要求用户名和密码,原因是 ...