题目例如以下:

Getting in Line 

Computer networking requires that the computers in the network be linked.

This problem considers a ``linear" network in which the computers are chainedtogether so that each is connected to exactly two others except for the two computers on the ends of the chain which are connected to only one other computer. A picture is shown
below. Here the computers are the black dots and their locations in the network are identified by planar coordinates (relative to a coordinate system not shown in the picture).

Distances between linked computers in the network are shown in feet.

For various reasons it is desirable to minimize the length of cable used.

Your problem is to determine how the computers should be connected into such a chain to minimize the total amount of cable needed. In the installation being constructed, the cabling will run beneath the floor, so the amount of cable used to join 2 adjacent
computers on the network will be equal to the distance between the computers plus 16 additional feet of cable to connect from the floor to the computers and provide some slack for ease of installation.

The picture below shows the optimal way of connecting the computers shownabove, and the total length of cable required for this configuration is (4+16)+ (5+16) + (5.83+16) + (11.18+16) = 90.01 feet.

Input

The input file will consist of a series of data sets. Each data set will begin with a line consisting of a single number indicating the number of computers in a network. Each network has at least 2 and at most 8 computers. A value of 0 for the number of
computers indicates the end of input.

After the initial line in a data set specifying the number of computers in a network, each additional line in the data set will give the coordinates of a computer in the network. These coordinates will be integers in the range 0 to 150. No two computers
are at identical locations and each computer will be listed once.

Output

The output for each network should include a line which tells the number of the network (as determined by its position in the input data), and one line for each length of cable to be cut to connect each adjacent pair of computers in the network. The final
line should be a sentence indicating the total amount of cable used.

In listing the lengths of cable to be cut,traverse the network from one end to the other. (It makes no difference atwhich end you start.) Use a format similar to the one shown in the sample output, with a line of asterisks separating output
for different networks and with distances in feet printed to 2 decimal places.

Sample Input

6
5 19
55 28
38 101
28 62
111 84
43 116
5
11 27
84 99
142 81
88 30
95 38
3
132 73
49 86
72 111
0

Sample Output

**********************************************************
Network #1
Cable requirement to connect (5,19) to (55,28) is 66.80 feet.
Cable requirement to connect (55,28) to (28,62) is 59.42 feet.
Cable requirement to connect (28,62) to (38,101) is 56.26 feet.
Cable requirement to connect (38,101) to (43,116) is 31.81 feet.
Cable requirement to connect (43,116) to (111,84) is 91.15 feet.
Number of feet of cable required is 305.45.
**********************************************************
Network #2
Cable requirement to connect (11,27) to (88,30) is 93.06 feet.
Cable requirement to connect (88,30) to (95,38) is 26.63 feet.
Cable requirement to connect (95,38) to (84,99) is 77.98 feet.
Cable requirement to connect (84,99) to (142,81) is 76.73 feet.
Number of feet of cable required is 274.40.
**********************************************************
Network #3
Cable requirement to connect (132,73) to (72,111) is 87.02 feet.
Cable requirement to connect (72,111) to (49,86) is 49.97 feet.
Number of feet of cable required is 136.99.

求连接几个点的一条有向路,使得路长最短。

因为数据较小,能够枚举几个点的全排列,分别算出路长,再求最小的那个。也能够用DFS+回溯,是更一般的方法,这种方法中用一个数组S记录节点的位置,避免设置麻烦的答案数组。

AC代码例如以下:

UVA Getting in Line的更多相关文章

  1. uva 11174 Stand in a Line

    // uva 11174 Stand in a Line // // 题目大意: // // 村子有n个村民,有多少种方法,使村民排成一条线 // 使得没有人站在他父亲的前面. // // 解题思路: ...

  2. CDQ分治入门 + 例题 Arnooks's Defensive Line [Uva live 5871]

    CDQ分治入门 简介 CDQ分治是一种特别的分治方法,它由CDQ(陈丹琦)神犇于09国家集训队作业中首次提出,因此得名.CDQ分治属于分治的一种.它一般只能处理非强制在线的问题,除此之外这个算法作为某 ...

  3. UVA 216 - Getting in Line

    216 - Getting in Line Computer networking requires that the computers in the network be linked. This ...

  4. Getting in Line UVA 216

     Getting in Line  Computer networking requires that the computers in the network be linked. This pro ...

  5. UVA 11174 Stand in a Line 树上计数

    UVA 11174 考虑每个人(t)的所有子女,在全排列中,t可以和他的任意子女交换位置构成新的排列,所以全排列n!/所有人的子女数连乘   即是答案 当然由于有MOD 要求逆. #include & ...

  6. UVa 12657 Boxes in a Line(应用双链表)

    Boxes in a Line You have n boxes in a line on the table numbered 1 . . . n from left to right. Your ...

  7. uva 11174 Stand in a Line (排列组合)

    UVa Online Judge 训练指南的题目. 题意是,给出n个人,以及一些关系,要求对这n个人构成一个排列,其中父亲必须排在儿子的前面.问一共有多少种方式. 做法是,对于每一个父节点,将它的儿子 ...

  8. Boxes in a Line UVA - 12657

      You have n boxes in a line on the table numbered 1...n from left to right. Your task is to simulat ...

  9. UVA 12657 Boxes in a Line 双向链表

    题目连接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=47066 利用链表换位置时间复杂度为1的优越性,同时也考虑到使用实际 ...

随机推荐

  1. OAuth在WebApi

    OAuth在WebApi中的使用,前后台分离的调用方式 前段时间由于公司架构服务层向WebApi转换,就研究了OAuth在WebApi中的使用,这中间遇到了很多坑,在此记录一下OAuth的正确使用方式 ...

  2. ZOJ 3795 Grouping(Tarjan收缩点+DAG)

    Suppose there are N people in ZJU, whose ages are unknown. We have some messages about them. The i-t ...

  3. SPOJ 15. The Shortest Path 堆优化Dijsktra

    You are given a list of cities. Each direct connection between two cities has its transportation cos ...

  4. Git--Submodule使用

    项目模板中通常由前端保持,所以每次更新模板.我也要跟着变化项目. 随着时间的推移,这不是一个方法来找到,老这么维护.大型项目,更多的模板,真的很容易管理和维护. 然后头让我用submodule前端资源 ...

  5. 设计管理员表;webservice用于网络安全的高端内提供服务的

    admin表设计.你应该有角色表,管理员属于一个样的作用,另一个接口选项,以查看表.角色有更多的选择的能力. 角色和选项代表了许多关系,因此,我们必须保持这种关系有一个表 版权声明:本文博客原创文章, ...

  6. CSS hack方式

    史上最全的CSS hack方式一览   做前端多年,虽然不是经常需要hack,但是我们经常会遇到各浏览器表现不一致的情况.基于此,某些情况我们会极不情愿的使用这个不太友好的方式来达到大家要求的页面表现 ...

  7. Android特效 五种Toast具体解释

    Toast是Android中用来显示显示信息的一种机制,和Dialog不一样的是,Toast是没有焦点的,并且Toast显示的时间有限,过一定的时间就会自己主动消失. 1.默认效果: 代码: Toas ...

  8. JQUERY省、市、县城市联动选择

    JQUERY 插件开发——CITYLINKAGE(省.市.县城市联动选择) 第一部分:背景   开发源于需求,本次城市联动选择插件算是我写插件的一个特例吧,不是我目前工作需要些的,算是兴趣驱使吧.之前 ...

  9. Cytoscape画图初探

    Cytoscape是一个做网络图的js插件.用起来非常方便,并且非常强大.这是它的站点:点击打开链接 使用它须要导入两个文件,一个是js文件,一个是css文件.官网上下载. 这里实现了一个功能.即从后 ...

  10. jQuery Easy UI Accordion(可伸缩的面板)包

    Accordion 可伸缩的面板组件.基于panel,示为以下的比率: <!doctype html> <html lang="en"> <head& ...