catalan卡特兰数
卡塔兰数是组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名。历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》最早用到“卡塔兰数”,远远早于卡塔兰。有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”。卡塔兰数的一般公式为 C(2n,n)/(n+1)。
括号化问题
出栈次序问题
类似题目:
catalan卡特兰数的更多相关文章
- Catalan卡特兰数入门
简介 卡特兰数是组合数学中的一种常见数列 它的前几项为: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, ...
- 卡特兰数(Catalan)
卡特兰数又称卡塔兰数,英文名Catalan number,是组合数学中一个常出现在各种计数问题中出现的数列.由以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名,其前几项为 : 1, 2, ...
- 卡特兰数(Catalan Number) 算法、数论 组合~
Catalan number,卡特兰数又称卡塔兰数,是组合数学中一个常出现在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)命名. 卡特兰数的前几个数 前20项为( ...
- 卡特兰数 Catalan数 ( ACM 数论 组合 )
卡特兰数 Catalan数 ( ACM 数论 组合 ) Posted on 2010-08-07 21:51 MiYu 阅读(13170) 评论(1) 编辑 收藏 引用 所属分类: ACM ( 数论 ...
- 卡特兰数(Catalan)简介
Catalan序列是一个整数序列,其通项公式是 h(n)=C(2n,n)/(n+1) (n=0,1,2,...) 其前几项为 : 1, 1, 2, 5, 14, 42, 132, 429, 1430, ...
- catalan 数——卡特兰数(转)
Catalan数——卡特兰数 今天阿里淘宝笔试中碰到两道组合数学题,感觉非常亲切,但是笔试中失踪推导不出来后来查了下,原来是Catalan数.悲剧啊,现在整理一下 一.Catalan数的定义令h(1) ...
- Catalan Number 卡特兰数
内容部分来自以下博客: Cyberspace_TechNode 邀月独斟 一个大叔 表示感谢! Catalan数的引入: 一个长度为2N的序列,里面有N个+1,N个-1 它的任意前缀和均非负,给定N, ...
- Catalan数——卡特兰数
一.Catalan数的定义 令h(0)=1,h(1)=1,Catalan数满足递归式:h(n) = h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)*h(0) (n& ...
- 卡特兰数 Catalan 笔记
一.公式 卡特兰数一般公式 令h(0)=1,h(1)=1,catalan数满足递推式.h(n) = h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n>= ...
随机推荐
- [转]Android下打印调试堆栈方法
http://blog.csdn.net/freshui/article/details/9456889 打印堆栈是调试的常用方法,一般在系统异常时,我们可以将异常情况下的堆栈打印出来,这样十分方便错 ...
- 转:HTML与URL两种录制模式分析
Loadrunner的Virtual User Generator 提供人脚本的录制功能,对于初学者来说,这大大的降低了编写脚本的门槛,loadrunner提供两种录制脚本的方式:Html_based ...
- Unity中的CG编写Shader系列(Blend)
1.不透明度 当我们要将两个半透的纹理贴图到一个材质球上的时候就遇到混合的问题,由于前面的知识我们已经知道了片段着色器以及后面的环节的主要工作是输出颜色与深度到帧缓存中,所以两个纹理在每个像素上的颜色 ...
- YII 框架在 MAC OS下 连接数据库失败 提示 DB connection: SQLSTATE[HY000] [2002]
作者:zccst CDbConnection failed to open the DB connection: SQLSTATE[HY000] [2002] No such file or dire ...
- HMC5883L地磁传感器驱动
霍尼韦尔 HMC5883L 是一种表面贴装的高集成模块,并带有数字接口的弱磁传感器芯片,应用于低成本罗盘和磁场检测领域.HMC5883L 包括最先进的高分辨率 HMC118X 系列磁阻传感器,并附带霍 ...
- JNI错误总结(转)
源:JNI错误总结 最近公司里要用JNI技术,用java去调用已经写好的本地DLL库.之前自己也没接触过相关技术,其中花了大部分时间在调试改错上面,网上对于错误的解决方案也不多,现在项目接近完工,自己 ...
- Delphi 与 DirectX
关于DirectX 在Delphi下的使用 源:Delphi 与 DirectX
- RFID射频卡超市购物结算系统
RFID射频卡超市购物结算系统 这段时间在做RFID射频卡超市购物结算系统,这个系统的设想来自于大学研究课题,但是我们在淘宝网上购买设备的时候淘宝店主都认为RF射频技术不好应用在超市购物结算系统,原因 ...
- uCOS-iii 中定义的一些常量
uCOS-iii 中定义的一些常量 uCOS-iii 中有许多宏定义的量,这些量不需要全部记住是什么意思,因为在阅读代码的时候可以选中变量或宏定义然后右键查看定义,就可以知道它代表的什么意思.但是如果 ...
- archlinux初次接触遇到的问题
arch-chroot /mnt /bin/bash ( 两个地址中间有空格)