Lamp

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 771    Accepted Submission(s): 230

Special Judge

Problem Description
There are several switches and lamps in the room, however, the connections between them are very complicated. One lamp may be controlled by several switches, and one switch may controls at most two lamps. And what’s more, some connections
are reversed by mistake, so it’s possible that some lamp is lighted when its corresponding switch is “OFF”!



To make things easier, we number all the lamps from 1 to N, and all the switches 1 to M. For each lamps, we give a list of switches controlling it. For example, for Lamp 1, the list is “1 ON 3 OFF 9 ON”, that means Lamp 1 will be lighted if the Switch 1 is
at the “ON” state OR the Switch 3 is “OFF” OR the Switch 9 is “ON”.



Now you are requested to turn on or off the switches to make all the lamps lighted.
 
Input
There are several test cases in the input. The first line of each test case contains N and M (1 <= N,M <= 500), then N lines follow, each indicating one lamp. Each line begins with a number K, indicating the number of switches controlling
this lamp, then K pairs of “x ON” or “x OFF” follow.
 
Output
Output one line for each test case, each contains M strings “ON” or “OFF”, indicating the corresponding state of the switches. For the solution may be not unique, any correct answer will be OK. If there are no solutions, output “-1”
instead.
 
Sample Input
2 2
2 1 ON 2 ON
1 1 OFF
2 1
1 1 ON
1 1 OFF
 
Sample Output
OFF ON
-1

DLX简单搜索。纠结了好久,行为2*m,每个开关ON,OFF两种状态,列为n,代表灯的状态,然后依照反复覆盖搜索。不须要估价函数,用一个vis数组记录开关状态即可。

代码:

/* ***********************************************
Author :rabbit
Created Time :2014/4/9 17:58:16
File Name :7.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pi acos(-1.0)
typedef long long ll;
struct DLX{
const static int maxn=200010;
#define FF(i,A,s) for(int i = A[s];i != s;i = A[i])
int L[maxn],R[maxn],U[maxn],D[maxn];
int size,col[maxn],row[maxn],s[maxn],H[maxn];
bool vis[1200];
int ans[maxn],cnt;
void init(int m){
for(int i=0;i<=m;i++){
L[i]=i-1;R[i]=i+1;U[i]=D[i]=i;s[i]=0;
}
memset(H,-1,sizeof(H));
L[0]=m;R[m]=0;size=m+1;
memset(vis,0,sizeof(vis));
}
void link(int r,int c){
U[size]=c;D[size]=D[c];U[D[c]]=size;D[c]=size;
if(H[r]<0)H[r]=L[size]=R[size]=size;
else {
L[size]=H[r];R[size]=R[H[r]];
L[R[H[r]]]=size;R[H[r]]=size;
}
s[c]++;col[size]=c;row[size]=r;size++;
}
void del(int c){//精确覆盖
L[R[c]]=L[c];R[L[c]]=R[c];
FF(i,D,c)FF(j,R,i)U[D[j]]=U[j],D[U[j]]=D[j],--s[col[j]];
}
void add(int c){ //精确覆盖
R[L[c]]=L[R[c]]=c;
FF(i,U,c)FF(j,L,i)++s[col[U[D[j]]=D[U[j]]=j]];
}
bool dfs(int k){//精确覆盖
if(!R[0]){
cnt=k;return 1;
}
int c=R[0];FF(i,R,0)if(s[c]>s[i])c=i;
del(c);
FF(i,D,c){
FF(j,R,i)del(col[j]);
ans[k]=row[i];if(dfs(k+1))return true;
FF(j,L,i)add(col[j]);
}
add(c);
return 0;
}
void remove(int c){//反复覆盖
FF(i,D,c)L[R[i]]=L[i],R[L[i]]=R[i];
}
void resume(int c){//反复覆盖
FF(i,U,c)L[R[i]]=R[L[i]]=i;
}
int A(){//估价函数
int res=0;
memset(vis,0,sizeof(vis));
FF(i,R,0)if(!vis[i]){
res++;vis[i]=1;
FF(j,D,i)FF(k,R,j)vis[col[k]]=1;
}
return res;
}
bool dance(int now){//反复覆盖
if(R[0]==0)return 1;
int temp=INF,c;
FF(i,R,0)if(temp>s[i])temp=s[i],c=i;
FF(i,D,c){
if(vis[row[i]^1])continue;
vis[row[i]]=1;remove(i);
FF(j,R,i)remove(j);
if(dance(now+1))return 1;
FF(j,L,i)resume(j);
resume(i);vis[row[i]]=0;
}
return 0;
}
}dlx;
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
dlx.init(n);
for(int i=1;i<=n;i++){
int a,b;char str[44];
scanf("%d",&a);
while(a--){
scanf("%d%s",&b,str);
if(str[1]=='N')dlx.link((b-1)<<1,i);
else dlx.link((b-1)<<1|1,i);
}
}
if(!dlx.dance(0))puts("-1");
else{
if(!dlx.vis[1])printf("ON");else printf("OFF");
for(int i=2;i<(m<<1);i+=2){
if(!dlx.vis[i])printf(" OFF");else printf(" ON");
}
puts("");
}
}
return 0;
}

HDU 2828 DLX搜索的更多相关文章

  1. HDU 4735 Little Wish~ lyrical step~(DLX搜索)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Description N children are living in a tree with exactly N nodes, on each node there lies either a b ...

  2. [DLX反复覆盖] hdu 2828 Lamp

    题意: 有N个灯M个开关 每一个灯的ON和OFF状态都能控制一个灯是否亮 给出N行,代表对于每一个灯 哪些开关的哪个状态能够使得第i个灯亮 思路: 这里须要注意一个问题 假设开关1的ON 状态和开关2 ...

  3. HDU 3909 DLX

    http://blog.csdn.net/sr_19930829/article/details/39756513 http://www.kuangbin.net/archives/hdu4069-d ...

  4. hdu 5468(莫比乌斯+搜索)

    hdu 5468 Puzzled Elena   /*快速通道*/ Sample Input 5 1 2 1 3 2 4 2 5 6 2 3 4 5   Sample Output Case #1: ...

  5. HDU 4499.Cannon 搜索

    Cannon Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Subm ...

  6. HDU 2828 Lamp 二分图的最大匹配 模型题

    http://acm.hdu.edu.cn/showproblem.php?pid=2828 给定n个灯,m个开关,使得每栈灯亮,前提是控制这栈灯的开关的状态是其中一个.(题目应该都看得懂) 其实我想 ...

  7. HDU 1045 (DFS搜索)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1045 题目大意:在不是X的地方放O,所有O在没有隔板情况下不能对视(横行和数列),问最多可以放多少个 ...

  8. HDU 1180 (BFS搜索)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1180 题目大意:迷宫中有一堆楼梯,楼梯横竖变化.这些楼梯在奇数时间会变成相反状态,通过楼梯会顺便到达 ...

  9. HDU 2531 (BFS搜索)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2531 题目大意: 你的身体占据多个点.每次移动全部的点,不能撞到障碍点,问撞到目标点块(多个点)的最 ...

随机推荐

  1. MFC消息映射的原理:笔记

    多态的实现机制有两种,一是通过查找绝对位置表,二是查找名称表:两者各有优缺点,那么为什么mfc的消息映射采用了第二种方法,而不是c++使用的第一种呢?因为在mfc的gui类库是一个庞大的继承体系,而里 ...

  2. phabricator在mac上的搭建(转)

    环境:OS X Yosemite 10.10.5 前提:phabricator主要是由php写的,而且是以website方式运行的,所以mac上要先安装好 php + nginx(或apache) + ...

  3. 使MYSQL能被外部访问_xeyuu_新浪博客

    使MYSQL能被外部访问_xeyuu_新浪博客 使MYSQL能被外部访问 (

  4. 11gR2(11.2) RAC TAF Configuration for Admin and Policy Managed Databases (文档 ID 1312749.1)

    In this Document   Purpose   _afrLoop=1459323732561579&id=1312749.1&displayIndex=10&_afr ...

  5. 设置Mysql的连接超时参数

     在Mysql的默认设置中,如果一个数据库连接超过8小时没有使用(闲置8小时,即   28800s),mysql server将主动断开这条连接,后续在该连接上进行的查询操作都将失败,将   出现:e ...

  6. 《转》div 中间固定 左右自适应实现

    <转自>:http://www.w3cplus.com/css/layout-column-three 对于我来说,这是一种很少碰到的布局方法,不知道大家有何体会,那么下面我们一起来看这种 ...

  7. 数组去重Array

    var aee3=[31,42,13,19,5,11,8,13,40,39,1,8,44,15,3]; Array.prototype.unqu2=function(){ this.sort(); v ...

  8. Eclipse乱码怎么办

    Eclipse里设置编码有三个层次:全局.工程.文件. 文件的编码会覆盖工程的编码,工程的编码会覆盖全局的编码. 我猜测:虽然你的工程编码更改为GBK,但只对新建文件有效. 如果工程中旧有的文件是UT ...

  9. OCA读书笔记(15) - 执行数据库备份

    物理备份 -- 数据文件,控制文件,日志文件,参数文件 数据库备份 冷备 -- 归档和非归档均可以 什么时候必须用冷备?1. 数据库的模式为非归档的2. 用于现场保护 冷备的过程:1. 首先查看备份文 ...

  10. c++中sort()及qsort()的使用方法总结

    当并算法具体解释请见点我 想起来自己天天排序排序,冒泡啊,二分查找啊,结果在STL中就自带了排序函数sort,qsort,总算把自己解脱了~ 所以自己总结了一下,首先看sort函数见下表:   函数名 ...