Lamp

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 771    Accepted Submission(s): 230

Special Judge

Problem Description
There are several switches and lamps in the room, however, the connections between them are very complicated. One lamp may be controlled by several switches, and one switch may controls at most two lamps. And what’s more, some connections
are reversed by mistake, so it’s possible that some lamp is lighted when its corresponding switch is “OFF”!



To make things easier, we number all the lamps from 1 to N, and all the switches 1 to M. For each lamps, we give a list of switches controlling it. For example, for Lamp 1, the list is “1 ON 3 OFF 9 ON”, that means Lamp 1 will be lighted if the Switch 1 is
at the “ON” state OR the Switch 3 is “OFF” OR the Switch 9 is “ON”.



Now you are requested to turn on or off the switches to make all the lamps lighted.
 
Input
There are several test cases in the input. The first line of each test case contains N and M (1 <= N,M <= 500), then N lines follow, each indicating one lamp. Each line begins with a number K, indicating the number of switches controlling
this lamp, then K pairs of “x ON” or “x OFF” follow.
 
Output
Output one line for each test case, each contains M strings “ON” or “OFF”, indicating the corresponding state of the switches. For the solution may be not unique, any correct answer will be OK. If there are no solutions, output “-1”
instead.
 
Sample Input
2 2
2 1 ON 2 ON
1 1 OFF
2 1
1 1 ON
1 1 OFF
 
Sample Output
OFF ON
-1

DLX简单搜索。纠结了好久,行为2*m,每个开关ON,OFF两种状态,列为n,代表灯的状态,然后依照反复覆盖搜索。不须要估价函数,用一个vis数组记录开关状态即可。

代码:

/* ***********************************************
Author :rabbit
Created Time :2014/4/9 17:58:16
File Name :7.cpp
************************************************ */
#pragma comment(linker, "/STACK:102400000,102400000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <string>
#include <time.h>
#include <math.h>
#include <queue>
#include <stack>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define eps 1e-8
#define pi acos(-1.0)
typedef long long ll;
struct DLX{
const static int maxn=200010;
#define FF(i,A,s) for(int i = A[s];i != s;i = A[i])
int L[maxn],R[maxn],U[maxn],D[maxn];
int size,col[maxn],row[maxn],s[maxn],H[maxn];
bool vis[1200];
int ans[maxn],cnt;
void init(int m){
for(int i=0;i<=m;i++){
L[i]=i-1;R[i]=i+1;U[i]=D[i]=i;s[i]=0;
}
memset(H,-1,sizeof(H));
L[0]=m;R[m]=0;size=m+1;
memset(vis,0,sizeof(vis));
}
void link(int r,int c){
U[size]=c;D[size]=D[c];U[D[c]]=size;D[c]=size;
if(H[r]<0)H[r]=L[size]=R[size]=size;
else {
L[size]=H[r];R[size]=R[H[r]];
L[R[H[r]]]=size;R[H[r]]=size;
}
s[c]++;col[size]=c;row[size]=r;size++;
}
void del(int c){//精确覆盖
L[R[c]]=L[c];R[L[c]]=R[c];
FF(i,D,c)FF(j,R,i)U[D[j]]=U[j],D[U[j]]=D[j],--s[col[j]];
}
void add(int c){ //精确覆盖
R[L[c]]=L[R[c]]=c;
FF(i,U,c)FF(j,L,i)++s[col[U[D[j]]=D[U[j]]=j]];
}
bool dfs(int k){//精确覆盖
if(!R[0]){
cnt=k;return 1;
}
int c=R[0];FF(i,R,0)if(s[c]>s[i])c=i;
del(c);
FF(i,D,c){
FF(j,R,i)del(col[j]);
ans[k]=row[i];if(dfs(k+1))return true;
FF(j,L,i)add(col[j]);
}
add(c);
return 0;
}
void remove(int c){//反复覆盖
FF(i,D,c)L[R[i]]=L[i],R[L[i]]=R[i];
}
void resume(int c){//反复覆盖
FF(i,U,c)L[R[i]]=R[L[i]]=i;
}
int A(){//估价函数
int res=0;
memset(vis,0,sizeof(vis));
FF(i,R,0)if(!vis[i]){
res++;vis[i]=1;
FF(j,D,i)FF(k,R,j)vis[col[k]]=1;
}
return res;
}
bool dance(int now){//反复覆盖
if(R[0]==0)return 1;
int temp=INF,c;
FF(i,R,0)if(temp>s[i])temp=s[i],c=i;
FF(i,D,c){
if(vis[row[i]^1])continue;
vis[row[i]]=1;remove(i);
FF(j,R,i)remove(j);
if(dance(now+1))return 1;
FF(j,L,i)resume(j);
resume(i);vis[row[i]]=0;
}
return 0;
}
}dlx;
int main(){
int n,m;
while(~scanf("%d%d",&n,&m)){
dlx.init(n);
for(int i=1;i<=n;i++){
int a,b;char str[44];
scanf("%d",&a);
while(a--){
scanf("%d%s",&b,str);
if(str[1]=='N')dlx.link((b-1)<<1,i);
else dlx.link((b-1)<<1|1,i);
}
}
if(!dlx.dance(0))puts("-1");
else{
if(!dlx.vis[1])printf("ON");else printf("OFF");
for(int i=2;i<(m<<1);i+=2){
if(!dlx.vis[i])printf(" OFF");else printf(" ON");
}
puts("");
}
}
return 0;
}

HDU 2828 DLX搜索的更多相关文章

  1. HDU 4735 Little Wish~ lyrical step~(DLX搜索)(2013 ACM/ICPC Asia Regional Chengdu Online)

    Description N children are living in a tree with exactly N nodes, on each node there lies either a b ...

  2. [DLX反复覆盖] hdu 2828 Lamp

    题意: 有N个灯M个开关 每一个灯的ON和OFF状态都能控制一个灯是否亮 给出N行,代表对于每一个灯 哪些开关的哪个状态能够使得第i个灯亮 思路: 这里须要注意一个问题 假设开关1的ON 状态和开关2 ...

  3. HDU 3909 DLX

    http://blog.csdn.net/sr_19930829/article/details/39756513 http://www.kuangbin.net/archives/hdu4069-d ...

  4. hdu 5468(莫比乌斯+搜索)

    hdu 5468 Puzzled Elena   /*快速通道*/ Sample Input 5 1 2 1 3 2 4 2 5 6 2 3 4 5   Sample Output Case #1: ...

  5. HDU 4499.Cannon 搜索

    Cannon Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)Total Subm ...

  6. HDU 2828 Lamp 二分图的最大匹配 模型题

    http://acm.hdu.edu.cn/showproblem.php?pid=2828 给定n个灯,m个开关,使得每栈灯亮,前提是控制这栈灯的开关的状态是其中一个.(题目应该都看得懂) 其实我想 ...

  7. HDU 1045 (DFS搜索)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1045 题目大意:在不是X的地方放O,所有O在没有隔板情况下不能对视(横行和数列),问最多可以放多少个 ...

  8. HDU 1180 (BFS搜索)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1180 题目大意:迷宫中有一堆楼梯,楼梯横竖变化.这些楼梯在奇数时间会变成相反状态,通过楼梯会顺便到达 ...

  9. HDU 2531 (BFS搜索)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2531 题目大意: 你的身体占据多个点.每次移动全部的点,不能撞到障碍点,问撞到目标点块(多个点)的最 ...

随机推荐

  1. 移动开发的框架(用Firepower,不用listview,超快) good

    我是通过http传送xml后台是阿帕奇的http server,后台可以用delphi或php 都可以.用post 刚才试了试自带的TNetHttpClient,感觉还好,代码封装也不算深,收发数据也 ...

  2. 编写在浏览器中不弹出警告的ActiveX控件

    我们在编写ActiveX控件时,如果用在浏览器中,经常都会弹出现在运行的脚本不安全的提示, 如果给客户使用,将会带来极大不便.按照MSDN的介绍通常有两种一种是实现IObjectSafe接口,一种是通 ...

  3. 二、Cocos2dx概念介绍(游戏开发中不同的坐标系,cocos2dx锚点)

    注:ccp是cocos2dx中的一个宏定义,#define ccp(__X__,__Y__)CCPointMake((float)__X__, (float)__Y__),在此文章中表示坐标信息 1. ...

  4. Apache Lucene

    1.Lucene  -全文搜索引擎 Apache Lucene 是一个基于Java的全文搜索引擎,利用它能够轻易的为Java软件添�全文搜索引擎的功能. Lucene最重要的工作是替文件的每个字索引, ...

  5. MySQL JDBC事务处理、封装JDBC工具类

    MySQL数据库学习笔记(十)----JDBC事务处理.封装JDBC工具类 一.JDBC事务处理: 我们已经知道,事务的概念即:所有的操作要么同时成功,要么同时失败.在MySQL中提供了Commit. ...

  6. hdu 1029(hash)

    传送门:Ignatius and the Princess IV 题意:给n个数,找出出现次数大于等于(n+1)/2的那个数. 分析:大水题,排个序输出中间那个即可,这里随便写个HASHMAP找出次数 ...

  7. VSTO之旅系列(三):自定义Excel UI

    原文:VSTO之旅系列(三):自定义Excel UI 本专题概要 引言 自定义任务窗体(Task Pane) 自定义选项卡,即Ribbon 自定义上下文菜单 小结 引言 在上一个专题中为大家介绍如何创 ...

  8. zoj2314(有上下界的网络流)

    传送门:Reactor Cooling 题意:给n个点,及m根pipe,每根pipe用来流躺液体的,单向的,每时每刻每根pipe流进来的物质要等于流出去的物质,要使得m条pipe组成一个循环体,里面流 ...

  9. swift-switch使用方法

    // Playground - noun: a place where people can play import UIKit //--------------------------------- ...

  10. SQL简单的日报和月报

    --320, SQL SERVER 日报 --查询2009-01-01当天客户A1,A2,A3的订单数量 SELECT Cust_Name , CONVERT(CHAR(10), Order_Date ...