Language:
Default
Bridging signals
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10762   Accepted: 5899

Description

'Oh no, they've done it again', cries the chief designer at the Waferland chip factory. Once more the routing designers have screwed up completely, making the signals on the chip connecting the ports of two functional blocks cross each other all over the place.
At this late stage of the process, it is too expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to
bridge as few signals as possible. The call for a computer program that finds the maximum number of signals which may be connected on the silicon surface without crossing each other, is imminent. Bearing in mind that there may be thousands of signal ports
at the boundary of a functional block, the problem asks quite a lot of the programmer. Are you up to the task?




A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers
in the range 1 to p, in which the i:th number specifies which port on the right side should be connected to the i:th port on the left side.Two signals cross if and only if the straight lines connecting the two ports of each pair do.

Input

On the first line of the input, there is a single positive integer n, telling the number of test scenarios to follow. Each test scenario begins with a line containing a single positive integer p < 40000, the number of ports on the two functional blocks. Then
follow p lines, describing the signal mapping:On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.

Output

For each test scenario, output one line containing the maximum number of signals which may be routed on the silicon surface without crossing each other.

Sample Input

4
6
4
2
6
3
1
5
10
2
3
4
5
6
7
8
9
10
1
8
8
7
6
5
4
3
2
1
9
5
8
9
2
3
1
7
4
6

Sample Output

3
9
1
4

Source


因为数据太大。必需要用高速方法。我今天看这个看了好久。记住一点,c[i]代表长度为 i 的字串中,最后位最小的值

seach就是找寻以a[i]结尾的序列会有多长,然后就更新

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<vector> #define L(x) (x<<1)
#define R(x) (x<<1|1)
#define MID(x,y) ((x+y)>>1) #define eps 1e-8
using namespace std;
#define N 100005 int a[N],c[N],n; int seach(int len,int x)
{
int le=0,ri=len,ans=0,mid;
while(le<=ri)
{
mid=(le+ri)>>1;
if(c[mid]<x)
{
ans=mid;
le=mid+1;
}
else
ri=mid-1;
}
return ans;
}
int main()
{
int i,j,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d",&a[i]); int len=1;
c[1]=a[1];
for(i=2;i<=n;i++)
{
if(a[i]>c[len])
{
j=len++;
}
else
j=seach(len,a[i]);
c[j+1]=a[i];
}
printf("%d\n",len);
}
return 0; }

版权声明:本文博主原创文章,博客,未经同意不得转载。

POJ 1631 Bridging signals(LIS 二分法 高速方法)的更多相关文章

  1. POJ 1631 Bridging signals (LIS:最长上升子序列)

    题意:给你一个长为n(n<=40000)的整数序列, 要你求出该序列的最长上升子序列LIS. 思路:要求(nlogn)解法 令g[i]==x表示当前遍历到的长度为i的所有最长上升子序列中的最小序 ...

  2. POJ 1631 Bridging signals(LIS O(nlogn)算法)

    Bridging signals Description 'Oh no, they've done it again', cries the chief designer at the Waferla ...

  3. OpenJudge/Poj 1631 Bridging signals

    1.链接地址: http://poj.org/problem?id=1631 http://bailian.openjudge.cn/practice/1631 2.题目: Bridging sign ...

  4. POJ 1631 Bridging signals

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9441   Accepted: 5166 ...

  5. poj 1631 Bridging signals (二分||DP||最长递增子序列)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9234   Accepted: 5037 ...

  6. Poj 1631 Bridging signals(二分+DP 解 LIS)

    题意:题目很难懂,题意很简单,求最长递增子序列LIS. 分析:本题的最大数据40000,多个case.用基础的O(N^2)动态规划求解是超时,采用O(n*log2n)的二分查找加速的改进型DP后AC了 ...

  7. POJ 1631 Bridging signals(LIS的等价表述)

    把左边固定,看右边,要求线不相交,编号满足单调性,其实是LIS的等价表述. (如果编号是乱的也可以把它有序化就像Uva 10635 Prince and Princess那样 O(nlogn) #in ...

  8. POJ - 1631 Bridging signals(最长上升子序列---LIS)

    题意:左右各n个端口,已知n组线路,要求切除最少的线路,使剩下的线路各不相交,按照左端口递增的顺序输入. 分析: 1.设左端口为l,右端口为r,因为左端口递增输入,l[i] < l[j](i & ...

  9. POJ 1631 Bridging signals & 2533 Longest Ordered Subsequence

    两个都是最长上升子序列,所以就放一起了 1631 因为长度为40000,所以要用O(nlogn)的算法,其实就是另用一个数组c来存储当前最长子序列每一位的最小值,然后二分查找当前值在其中的位置:如果当 ...

随机推荐

  1. 09_android入门_採用android-async-http开源项目的GET方式或POST方式实现登陆案例

    依据08_android入门_android-async-http开源项目介绍及用法的介绍,我们通过最常见的登陆案例进行介绍android-async-http开源项目中有关类的使用.希望对你学习an ...

  2. quick-cocos2d-x游戏开发【4】——加入文本

    文本的加入在quick中被封装在ui类中,它能够创建EditBox.菜单以及文本,文本总得来说能够创建TTF和BMFont两种. api对于它的说明非常具体.ui.newBMFontLabel(par ...

  3. js获取设备信息

    var su = navigator.userAgent.toLowerCase(), mb = ['ipad', 'iphone os', 'midp', 'rv:1.2.3.4', 'ucweb' ...

  4. OpenCV两张图片的合并

    转载请注明出处..! http://blog.csdn.net/zhonghuan1992 OpenCV两张图片的合并 原理: 两张图片合并,想想图片是用一个个像素点来存储.每一个像素点有他的值. 那 ...

  5. ACdream原创群赛(18)のAK's dream题解

    只做了4题水题ADGI A题需要注意的就是“[...]”的输出了,何时输出,何时不输出. #include <stdio.h> int main() { int n, cur, d; ; ...

  6. DOMContentLoaded和window.onload

    相信写js的.都知道window.onload吧,可是并非每一个人都知道DOMContentLoaded,事实上即使你不知道.非常有可能你也常常使用了这个东西. 普通情况下,DOMContentLoa ...

  7. jQuery来源学习笔记:扩展的实用功能

    // 扩展的实用功能 jQuery.extend({ // http://www.w3school.com.cn/jquery/core_noconflict.asp // 释放$的 jQuery 控 ...

  8. Google Maps Android API v2 (4)- 地图类型

    地图类型 地图内的谷歌地图的Android API的种类有很多.地图的类型管辖地图的整体代表性.例如,地图集通常包含政治地图,专注于显示边界和道路地图,显示了一个城市或地区的所有道路. Android ...

  9. Zookeeper分享

    Zookeeper: 是一个分布式的,为分布式应用提供数据一致性服务的程序. Zookeeper是怎么来的? 分布式系统:是一个硬件或软件组件分布在不同的网络计算机上,彼此之间仅仅通过消息传递进行通信 ...

  10. bash组织成树数据结构

    君子也非独占,善假于物!bash也因此.昨天晚上,今天早上世界杯很精彩.晚上醒来看到不断地居住的电话.早上没有喝的水开始赞赏在英国和意大利的对决.也TM精彩,最后生下了罗马文化.意大利伊特鲁里亚文化获 ...